The present research is focused on the manufacturing and analysis of the thermal and electrical properties of advanced ceramics from alumina (Al 2 O 3 ) with carbon nanofiller (CNF) from oil palm ash (OPA). The oil palm ash was used to produce carbon black nanofillers with a size of 50 to 100 nm via a ball milling process after undergoing pyrolysis in a furnace at 1000 °C. CNFs were added to the alumina at varying weight fractions and sintered at 1400 °C for the production of CNF ceramic composites. The coefficient of thermal expansion (CTE), electrical conductivity (EC), and electrostatic discharge (ESD) of the ceramic composites were measured. The CTE did not increase with increasing CNF weight and behaved like an alumina matrix. The EC (I-V) showed positive results with increasing CNF weight. The ESD measurement gave predictable results on the dissipative characteristics of ceramic composites due to the insulating nature of alumina with the addition of CNF. Thus, the addition of OPA to alumina may present a suitable route for improving the electrical properties of advanced ceramics.
The aim of this study was to explore the incorporation of biomass carbon nanofillers (CNF) into advanced ceramic. Biomass from bamboo, bagasse (remains of sugarcane after pressing), and oil palm ash was used as the predecessor for producing carbon black nanofillers. Furnace pyrolysis was carried out at 1000 °C and was followed by ball-mill processing to obtain carbon nanofillers in the range of 50 nm to 100 nm. CNFs were added to alumina in varying weight fractions and the resulting mixture was subjected to vacuum sintering at 1400 °C to produce nanobioceramic composites. The ceramic composites were characterized for mechanical, thermal, and morphological properties. A high-resolution Charge-coupled device (CCD) camera was used to study the fracture impact and the failure mechanism. An increase in the loading percentage of CNFs in the alumna decreased the specific gravity, vickers hardness (HV), and fracture toughness values of the composite materials. Furthermore, the thermal conductivity and the thermal stability of the ceramic composite increased as compared to the pristine alumina.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.