Few-shot detection and classification have advanced significantly in recent years. Yet, detection approaches require strong annotation (bounding boxes) both for pre-training and for adaptation to novel classes, and classification approaches rarely provide localization of objects in the scene. In this paper, we introduce StarNet - a few-shot model featuring an end-to-end differentiable non-parametric star-model detection and classification head. Through this head, the backbone is meta-trained using only image-level labels to produce good features for jointly localizing and classifying previously unseen categories of few-shot test tasks using a star-model that geometrically matches between the query and support images (to find corresponding object instances). Being a few-shot detector, StarNet does not require any bounding box annotations, neither during pre-training nor for novel classes adaptation. It can thus be applied to the previously unexplored and challenging task of Weakly Supervised Few-Shot Object Detection (WS-FSOD), where it attains significant improvements over the baselines. In addition, StarNet shows significant gains on few-shot classification benchmarks that are less cropped around the objects (where object localization is key).
In this paper, we propose a new few-shot learning method called StarNet, which is an end-to-end trainable non-parametric starmodel few-shot classifier. While being meta-trained using only imagelevel class labels, StarNet learns not only to predict the class labels for each query image of a few-shot task, but also to localize (via a heatmap) what it believes to be the key image regions supporting its prediction, thus effectively detecting the instances of the novel categories. The localization is enabled by the StarNet's ability to find large, arbitrarily shaped, semantically matching regions between all pairs of support and query images of a few-shot task. We evaluate StarNet on multiple fewshot classification benchmarks attaining significant state-of-the-art improvement on the CUB and ImageNetLOC-FS, and smaller improvements on other benchmarks. At the same time, in many cases, StarNet provides plausible explanations for its class label predictions, by highlighting the correctly paired novel category instances on the query and on its best matching support (for the predicted class). In addition, we test the proposed approach on the previously unexplored and challenging task of Weakly Supervised Few-Shot Object Detection (WS-FSOD), obtaining significant improvements over the baselines.
Network architecture search (NAS) achieves state-of-theart results in various tasks such as classification and semantic segmentation. Recently, a reinforcement learning-based approach has been proposed for Generative Adversarial Networks (GANs) search. In this work, we propose an alternative strategy for GAN search by using a method called DEGAS (Differentiable Efficient GenerAtor Search), which focuses on efficiently finding the generator in the GAN. Our search algorithm is inspired by the differential architecture search strategy and the Global Latent Optimization (GLO) procedure. This leads to both an efficient and stable GAN search. After the generator architecture is found, it can be plugged into any existing framework for GAN training. For CTGAN, which we use in this work, the new model outperforms the original inception score results by 0.25 for CIFAR-10 and 0.77 for STL. It also gets better results than the RL based GAN search methods in shorter search time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.