Prostate cancer (PCa) is the second most common cancer in men worldwide and the most frequently diagnosed cancer among men in more developed countries. The prognosis of PCa is excellent if detected at an early stage, making early screening crucial for detection and treatment. In recent years, a new form of diffusion magnetic resonance imaging called correlated diffusion imaging (CDI) was introduced, and preliminary results show promise as a screening tool for PCa. In the largest study of its kind, we investigate the relationship between PCa presence and a new variant of CDI we term synthetic correlated diffusion imaging (CDI$$^s$$ s ), as well as its performance for PCa delineation compared to current standard MRI techniques [T2-weighted (T2w) imaging, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) imaging] across a cohort of 200 patient cases. Statistical analyses reveal that hyperintensity in CDI$$^s$$ s is a strong indicator of PCa presence and achieves strong delineation of clinically significant cancerous tissue compared to T2w, DWI, and DCE. These results suggest that CDI$$^s$$ s hyperintensity may be a powerful biomarker for the presence of PCa, and may have a clinical impact as a diagnostic aid for improving PCa screening.
We present Recurrence with Correlation Network (RWCNet), a medical image registration network with multi-scale features and a cost volume layer. We demonstrate that these architectural features improve medical image registration accuracy in two image registration datasets prepared for the MICCAI 2022 Learn2Reg Workshop Challenge. On the large-displacement National Lung Screening Test (NLST) dataset, RWCNet is able to achieve a total registration error (TRE) of 2.11mm between corresponding keypoints without finetuning. On the OASIS brain MRI dataset, RWCNet is able to achieve an average dice overlap of 81.7% for 35 different anatomical labels. It outperforms another multi-scale network, the Laplacian Image Registration Network (LapIRN), on both datasets. Ablation experiments are performed to highlight the contribution of the various architectural features. While multi-scale features improved validation accuracy for both datasets, the cost volume layer and number of recurrent steps only improved performance on the NLST dataset. This result suggests that cost volume layer and iterative refinement using RNN provide good support for optimization and generalization in large-displacement medical image registration. The code for RWCNet is available at https://github.com/vigsivan/optimization-based-registration.
Prostate cancer (PCa) is the second most common cancer in men worldwide and the most frequently diagnosed cancer among men in more developed countries. The prognosis of PCa is excellent if detected at an early stage, making early screening crucial for detection and treatment. In recent years, a new form of diffusion magnetic resonance imaging called correlated diffusion imaging (CDI) was introduced, and preliminary results show promise as a screening tool for PCa. In the largest study of its kind, we investigate the relationship between PCa presence and a new variant of CDI we term synthetic correlated diffusion imaging (CDI s ), as well as its performance for PCa delineation compared to current standard MRI techniques (T2-weighted (T2w) imaging, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) imaging) across a cohort of 200 patient cases. Statistical analyses reveal that hyperintensity in CDI s is a strong indicator of PCa presence and achieves strong delineation of clinically significant cancerous tissue compared to T2w, DWI, and DCE. These results suggest that CDI s hyperintensity may be a powerful biomarker for the presence of PCa, and may have a clinical impact as a diagnostic aid for improving PCa screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.