Mechanical and shape recovery characteristics of thermal-responsive shape-memory polyurethane (SMPU) reinforced with two types of reinforcements, multiwalled carbon nanotubes (MWCNTs) and halloysite nanotubes (HNTs), were studied in the present research work. Three weight percentages of reinforcement (0, 0.5 and 1%) in the SMPU matrix were considered, and the required composite specimens were obtained through injection moulding. Tensile, flexural, impact and shape recovery behaviours were studied experimentally. Further, flexural tests were performed for multiple cycles to understand the specimens’ flexural strength variation after shape recovery. The concentration of both reinforcements (MWCNTs and HNTs) considered in the present study significantly improved mechanical properties and shape recovery.
The mechanical and shape-recovery characteristics of 4D-printed thermally responsive shape-memory polyurethane (SMPU) reinforced with two types of reinforcements, multiwalled carbon nanotubes (MWCNTs) and Halloysite nanotubes (HNTs), are investigated in the present study. Three weight percentages of reinforcements (0, 0.5, and 1) in the SMPU matrix are considered, and the required composite specimens are obtained with 3D printing. Further, for the first time, the present study investigates the flexural test for multiple cycles to understand the 4D-printed specimens’ flexural behavior variation after shape recovery. The 1 wt% HNTS-reinforced specimen yielded higher tensile, flexural, and impact strengths. On the other hand, 1 wt% MWCNT-reinforced specimens exhibited quick shape recovery. Overall, enhanced mechanical properties were observed with HNT reinforcements, and a faster shape recovery was observed with MWCNT reinforcements. Further, the results are promising for the use of 4D-printed shape-memory polymer nanocomposites for repeated cycles even after a large bending deformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.