The erosion of a cohesive soil by an impinging turbulent jet is observed, for instance, during the landing of a spacecraft or involved in the so-called jet erosion test. To provide a quantitative understanding of this situation for cohesive soils, we perform experiments using a model cohesion controlled granular material that allows us to finely tune the cohesion between particles while keeping the other properties constant. We investigate the response of this cohesive granular bed when subjected to an impinging normal turbulent jet. We characterize experimentally the effects of the cohesion on the erosion threshold and the development of the crater. We demonstrate that the results can be rationalized by introducing a cohesive Shields number that accounts for the inter-particles cohesion force. The results of our experiments highlight the crucial role of cohesion in erosion processes.
The erosion and transport of particles by an impinging turbulent jet in air is observed in various situations, such as the cleaning of a surface or during the landing of a spacecraft. The presence of inter-particle cohesive forces modifies the erosion threshold, beyond which grains are transported. The cohesion also influences the resulting formation and shape of the crater. In this paper, we characterize the role of the cohesive forces on the erosion of a flat granular bed by an impinging normal turbulent jet in air. We perform experiments using a cohesion-controlled granular material to finely tune the cohesion between particles while keeping the other properties constant. We investigate the effects of the cohesion on the erosion threshold and show that the results can be rationalized by a cohesive Shields number that accounts for the inter-particles cohesion force. Despite the complex nature of a turbulent jet, we can provide a scaling law to correlate the jet erosion threshold, based on the outlet velocity at the nozzle, to a local cohesive Shields number. The presence of cohesion between the grains also modifies the shape of the resulting crater, the transport of grains, and the local erosion process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.