To categorize the nations to reflect the development status, to date, there are many conceptual frameworks. The Human Development index (HDI) that is published by the United Nations Development Programme is widely accepted and practiced by many people such as academicians, politicians, and donor organizations. However, though the development of HDI has gone through many revisions since its formulation in 1990, even the current version of the index formulation published in 2016 needs research to better understand and to gap-fill the knowledge base that can enhance the index formulation to facilitate the direction of attention such as release of funds. Therefore, in this paper, based on principal component analysis and K-means clustering algorithm, the data that reflect the measures of life expectancy index (LEI), education index (EI), and income index (II) are analyzed to categorize and to rank the member states of the UN using R statistical software package, an open source extensible programming language for statistical computing and graphics. The outcome of the study shows that the proportion of total eigen value (i.e., proportion of total variance) explained by PCA-1 (i.e., first principal component) accounts for more than 85% of the total variation. Moreover, the proportion of total eigen value explained by PCA-1 increases with time (i.e., yearly) though the amount of increase with time is not significant. However, the proportions of total eigen value explained by PCA-2 and PCA-3 decrease with time. Therefore, the loss of information in choosing PCA-1 to represent the chosen explanatory variables (i.e., LEI, EI, and II) may diminish with time if the trend of increasing pattern of proportion of total eigen value explained by PCA-1 with time continues in the future as well. On the other hand, the correlation between EI and PCA-1 increases with time although the magnitude of increase is not that significant. This same trend is observed in II as well. However, in contrast to these observations, the correlation between PCA-1 and LEI decreases with time. These findings imply that the contribu- tions of EI and II to PCA-1 increase with time, but the contribution of LEI to PCA-1 decreases with time. On top of these, as per Hopkins statistic, the clusterability of the information conveyed by PCA-1 alone is far better than the clusterability of the information conveyed by PCA scores (i.e., PCA-1, PCA-2, and PCA-3) and the explanatory variables. Therefore, choosing PCA-1 to represent the chosen explanatory variables is becoming more concrete.
Under the possible hydrological conditions, with a design hyetograph of 3-month average rainfall intensities of Singapore, multiple regression equations on hydrological processes, specifically on overflow volume, average vertical ex-filtration rate and horizontal flow coefficient, of a soak-away rain garden are established based on simulated results of a mathematical model. The model that is based on Richard's equation is developed using COMSOL Multiphysics. The regression equation on overflow volume and the regression equation on log of horizontal flow coefficient show a very strong relationship with the independent variables (saturated hydraulic conductivity of the filter media, saturated hydraulic conductivity of the in-situ soil, depth to groundwater table, and surface area of the soak-away rain garden). The coefficients of determination of the fitted equations on overflow volume and log of horizontal flow coefficient were 0.992 and 0.986, respectively. However, the regression equation on average vertical ex-filtration rate has high p-values (p-values > significance level, α = 0.01) for saturated hydraulic conductivity of the in-situ soil and surface area of the soak-away rain garden. Thus, forward stepwise regression was used to develop the best regression equation on average vertical ex-filtration rate with saturated hydraulic conductivity of the filter media and depth to groundwater table. The coefficient of determination of the fitted equation was found to be 0.911. These easy to use regression equations will be of great utility for local mangers in the design of soak-away rain gardens.
The need to allocate the existing water in a sustainable manner, even with the projected population growth, has made to assess the consumptive use or evapotranspiration (ET), which determines the irrigation demand. As underscored in the literature, Penman-Monteith method which is a combination of aerodynamic and energy balance method is widely used and accepted as the method of estimation of ET. However, the application of Penman-Monteith relies on many climate parameters such as relative humidity, solar radiation, temperature, and wind speed. Therefore, there exists a need to determine the parameters that are most sensitive and correlated with dependent variable (i.e., ET), to strengthen the knowledge base. However, the sensitivity of ET using Penman-Monteith is oftentimes estimated using meteorological data from climate stations. Such estimation of sensitivity may vary spatially and thus there exists a need to estimate sensitivity of ET spatially. Thus, in this paper, based on One-AT-A-Time (OAT) method, a spatial sensitivity tool that can geographically encompass all the best available climate datasets to produce ET and its sensitivity at different spatial scales is developed. The spatial tool is developed as a Python toolbox in ArcGIS using Python, an open source programming language, and the ArcPy site-package of ArcGIS. The developed spatial tool is demonstrated using the meteorological data from Automated Weather Data Network in Nebraska in 2010. To summarize the outcome of the sensitivity analysis using OAT method, sensitivity indices are developed for each raster cell. The demonstration of the tool shows that, among the considered parameters, the computed ET using Penman-Monteith is highly sensitive to solar radiation followed by temperature for the state of Nebraska, as depicted by the sensitivity index. The computed sensitivity index of wind speed and the relative humidity are not that significant compared to the sensitivity index of solar radiation and temperature.
To assess the groundwater vulnerability due to leaching of chemicals, the groundwater system in the unsaturated zone is characterized by conceptual models that are further extended and refined with more detailed mathematical models to understand the governing physical processes in detail. However, due to lack of data and uncertainty level, an intermediate transition through index based models is researched. The attenuation factor (AF) approach, which works under the assumption that the chemicals degrade following a first-order kinetics and determines the fraction of the chemicals that goes to groundwater table, is one of the index based models that has been widely used due to its simplicity. Therefore, the objective of this paper is to review the research works done using the AF approach, to outline the future research needs. Furthermore, the mathematical implementation of the AF approach and the associated uncertainty levels is explained through an example and MATLAB source code.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.