IP address blacklists are a useful source of information about repeat attackers. Such information can be used to prioritize which traffic to divert for deeper inspection (e.g., repeat offender traffic), or which traffic to serve first (e.g., traffic from sources that are not blacklisted). But blacklists also suffer from overspecialization-each list is geared towards a specific purpose-and they may be inaccurate due to misclassification or stale information. We propose BLAG, a system that evaluates and aggregates multiple blacklists feeds, producing a more useful, accurate and timely master blacklist, tailored to the specific customer network. BLAG uses a sample of the legitimate sources of the customer network's inbound traffic to evaluate the accuracy of each blacklist over regions of address space. It then leverages recommendation systems to select the most accurate information to aggregate into its master blacklist. Finally, BLAG identifies portions of the master blacklist that can be expanded into larger address regions (e.g. /24 prefixes) to uncover more malicious addresses with minimum collateral damage. Our evaluation of 157 blacklists of various attack types and three ground-truth datasets shows that BLAG achieves high specificity up to 99%, improves recall by up to 114 times compared to competing approaches, and detects attacks up to 13.7 days faster, which makes it a promising approach for blacklist generation.
Commodity network devices support adding in-band telemetry measurements into data packets, enabling a wide range of applications, including network troubleshooting, congestion control, and path tracing. However, including such information on packets adds significant overhead that impacts both flow completion times and applicationlevel performance.We introduce PINT , an in-band telemetry framework that bounds the amount of information added to each packet. PINT encodes the requested data on multiple packets, allowing per-packet overhead limits that can be as low as one bit. We analyze PINT and prove performance bounds, including cases when multiple queries are running simultaneously. PINT is implemented in P4 and can be deployed on network devices.Using real topologies and traffic characteristics, we show that PINT concurrently enables applications such as congestion control, path tracing, and computing tail latencies, using only sixteen bits per packet, with performance comparable to the state of the art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.