Abstract. The conventional analysis of Delay-Tolerant Network (DTN) routing assumes that the terrain over which nodes move is closed implying that when the nodes hit a boundary, they either wrap around or get reflected. In this work, we study the effect of relaxing this closed terrain assumption on the routing performance, where a continuous stream of nodes enter the terrain and get absorbed upon hitting the boundary.We introduce a realistic framework that models the open terrain as a queue and compares performance with the closed terrain for a variety of routing protocols. With three different mobility scenarios and four different routing protocols, our simulation shows that the routing delays in an open terrain are statistically equivalent to those in closed terrains for all routing protocols. However, in terms of cost some protocols differ widely in two cases while some continue to demonstrate the statistical equivalence. We believe that this could be a new way to classify routing protocols based on the difference in their behavior under churn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.