A group of small sensors can participate in the wireless network infrastructure and make appropriate transmission and communication sensor networks. There are numerous uses for drones, including military, medical, agricultural, and atmospheric monitoring. The power sources available to nodes in WSNs are restricted. Furthermore, because of this, a diverse method of energy availability is required, primarily for communication over a vast distance, for which Multi-Hop (MH) systems are used. Obtaining the optimum routing path between nodes is still a significant problem, even when multi-hop systems reduce the cost of energy needed by every node along the way. As a result, the number of transmissions must be kept to a minimum to provide effective routing and extend the system's lifetime. To solve the energy problem in WSN, Taylor based Gravitational Search Algorithm (TBGSA) is proposed, which combines the Taylor series with a Gravitational search algorithm to discover the best hops for multi-hop routing. Initially, the sensor nodes are categorised as groups or clusters and the maximum capable node can access the cluster head the next action is switching between multiple nodes via a multi-hop manner. Initially, the best (CH) Cluster Head is chosen using the Artificial Bee Colony (ABC) algorithm, and then the data is transmitted utilizing multi-hop routing. The comparison result shows out the extension of networks longevity of the proposed method with the existing EBMRS, MOGA, and DMEERP methods. The network lifetime of the proposed method increased by 13.2%, 21.9% and 29.2% better than DMEERP, MOGA, and EBMRS respectively.
Boundary recognition plays a vital role in real-world scenarios like medical imaging and surveillance. The classical edge detector fails to preserve minute details in the image. The abdominal CT images were first analyzed using two edge detection techniques based on gauss gradient are proposed here for real-time data processing. The performance of the edge detectors is validated by performance metrics and verified for benchmark dataset images. The results reveal that the gauss gradient edge detector was efficient for the boundary extraction in benchmark and medical images. The VLSI implementation of the proposed gauss gradient edge detectors is done using the Kintex 7-FPGA board, hardware implementation also generates efficient results with reduced execution time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.