The present (cumulative) thesis examines fundamentals of nanostructure-enhanced extreme-ultraviolet light generation in noble gases using two different nanostructure geometries for local field-enhancement. Specifically, resonant antennas and tapered hollow waveguide nanostructures are utilized to enhance low-energy femtosecond laser pulses, which in turn induce light emission from excited xenon, argon and neon atoms and ions. Spectral analysis of this radiation reveals that coherent high-order harmonic generation is not feasible under the examined conditions, contrary to former expectations and reports. Instead, the spectral characteristics unequivocally identify that incoherent fluorescence from multiphoton excited and strong-field ionized gas atoms is the predominant process in such schemes. Furthermore, novel nanostructure-enhanced effects are reported such as surface-enhanced fifth-order harmonic generation (from bow-tie nanoantennas) and the formation of a bistable nanoplasma (in a hollow waveguide). These effects offer intriguing links between nonlinear nano-optics, plasma dynamics and extreme-ultraviolet radiation. v vi Contents List of Figures ix 1 Introduction
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.