Several studies focused on the macroscopic architecture of increased cardiac wall induced by exercise training. Our goal was to evaluate myocardiocyte, interstitial and vascular component, and connexin-43 expression in endurance-trained mouse hearts. Sixty-three 10-week-old male Swiss mice were divided into four sedentary groups (C0, C15, C30 and C45) and three groups exercised respectively for 15 (T15-D; running intensity [RI]: 3.18 m/min; running duration [RD]: 75 min/first week and 150 min/second week), 30 (T30-D; RI: 3.96 m/min; RD: 150 min/third week and 225 min/fourth week) and 45 days (T45-D; RI: 3.96 m/min and 4.8 m/min, respectively for the fifth and sixth week; RD: 300 min) on a treadmill. Morphometric analyses were performed to quantify myocardiocyte size and number, and the capillary and interstitial connective tissue (ICT) area. We assessed the expression of ventricle myosin light chain-II, vimentin and connexin-43 by western blot analyses. Our results showed a hypertrophy of the interventricular septum and left ventricle in T30-D and T45-D mice that was not due to variations in myofibrillar content, myocardiocyte size and number, or ICT quantity but to a significant increase in the capillary area. The microvascular remodeling was associated with vimentin increased expression in ICT cells and connexin-43 upregulation. The first phenomenon might be related to an enhanced request of remodeling and growth factors; the second suggests a new role of connexin-43 in cardiac angiogenesis.
Recent reports supported the existence of stem cells in adult hearts. However, phenotype and localization of these cells have not been completely described and it is unknown if cardiac regenerative potential differs from one subject to another. The aims of our work were to identify different populations of cardiac stem cells by the analysis of specific markers and to evaluate the expression variability of these markers in 12 adult rat hearts. The expression of CD9, taube nuss and nanog suggests the presence of stem cells from the earliest stages of embryogenesis in adult myocardium. Their different expression could be associated to the degree of stem cell differentiation. CD34 and c-Kit antibodies were used to detect stem cells committed to one or more specific tissue lineages and we found a strong immunoreactivity for CD34 exclusively in the endothelial cells and a low positivity for c-Kit in the interstitium and next to the vessels. Moreover, as c-Kit expression highly differed within all examined hearts, we suggest that cardiomyogenic potential is different among the various subjects. Undifferentiated cells with myogenic-committed phenotype expressing GATA-4 and nestin were found, respectively, in the interstitial and myocardial cells and in few interstitial cells. Therefore, the physiologic turn over of cardiomyocytes may occur in adult hearts as it has been shown in many others organs. The study of myogenic potential could be important to identify markers specific of stem cells in in vivo adult myocardium that may be used to purify these cells and evaluate their regenerative ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.