Micro-blogging services can track users' geo-locations when users check-in their places or use geo-tagging which implicitly reveals locations. This "geo tracking" can help to find topics triggered by some events in certain regions. However, discovering such topics is very challenging because of the large amount of noisy messages (e.g. daily conversations). This paper proposes a method to model geographical topics, which can filter out irrelevant words by different weights in the local and global contexts. Our method is based on the Latent Dirichlet Allocation (LDA) model but each word is generated from either a local or a global topic distribution by its generation probabilities. We evaluated our model with data collected from Weibo, which is currently the most popular micro-blogging service for Chinese. The evaluation results demonstrate that our method outperforms other baseline methods in several metrics such as model perplexity, two kinds of entropies and KL-divergence of discovered topics.
The concept of causality plays a significant role in human cognition. In the past few decades, causal effect estimation has been well developed in many fields, such as computer science, medicine, economics, and other industrial applications. With the advancement of deep learning, it has been increasingly applied in causal effect estimation against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective functions to estimate counterfactual data unbiasedly. Different from the existing surveys on causal models in machine learning, this paper mainly focuses on the overview of the deep causal models, and its core contributions are as follows: 1) we cast insight on a comprehensive overview of deep causal models from both timeline of development and method classification perspectives; 2) we outline some typical applications of causal effect estimation to industry; 3) we also endeavor to present a detailed catego-rization and analysis on relevant datasets, source codes and experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.