Due to the unique optical and electrochemical properties, large surface area, tunable properties, and high thermal stability, nanoporous anodic aluminum oxide (AAO) has become one of the most popular materials with a large potential to develop emerging applications in numerous areas, including biosensors, desalination, high-risk pollutants detection, capacitors, solar cell devices, photonic crystals, template-assisted fabrication of nanostructures, and so on. This review covers the mechanism of AAO formation, manufacturing technology, the relationship between the properties of AAO and fabrication conditions, and applications of AAO. Properties of AAO, like pore diameter, interpore distance, wall thickness, and anodized aluminum layer thickness, can be fully controlled by fabrication conditions, including electrolyte, applied voltage, anodizing and widening time. Generally speaking, the pore diameter of AAO will affect its specific application to a large extent. Moreover, manufacturing technology like one/two/multi step anodization, nanoimprint lithography anodization, and pulse/cyclic anodization also have a major impact on overall array arrangement. The review aims to provide a perspective overview of the relationship between applications and their corresponding AAO pore sizes, systematically. And the review also focuses on the strategies by which the structures and functions of AAO can be utilized.
Neonatal cholestasis disease (NCD) is a complex and easily mis-diagnosed condition. We analyzed microbiota community structure in feces and measured short-chain fatty acids, bile acids (BAs) and liver function of 12 healthy, 13 NCD, and 13 treated infants after diagnosis. Based on 16S rRNA gene amplicon sequencing and gas-chromatographic-mass-spectrometric analysis of secondary BAs, we identified microbial genera and metabolites that associate with abnormal bile secretion. Streptococcus gallolyticus and Parabacteroides distasonis, and Lactobacillus gasseri had higher relative abundance in healthy and NCD infants respectively. Compared to NCD patients, healthy infants had higher LCA, CDCA and GCDCA fecal concentrations. The three microbial species and three secondary bile acids were selected as potential non-invasive combined biomarkers to diagnose NCD. We propose that microbiotametabolite combined biomarkers could be used for diagnosis of NCD, and this may contribute to improved early clinical diagnosis of NCD in the future. Neonatal cholestasis disease (NCD) affects approximately 1 in every 2500 term infants and is infrequently recognized by primary providers in the setting of physiologic jaundice. Cholestasis jaundice is mostly due to biliary atresia and frequently results from non-biliary atresia 1. The etiology of biliary atresia is unclear but is thought to involve bile duct dysmorphogenesis, viral infection, toxins, chronic inflammation, or autoimmune-mediated bile duct injury 2-5. Non-biliary atresia etiology of neonatal cholestasis may involve bacterial sepsis, galactosemia, tyrosinemia, panhypopituitarism, defective BA synthesis, or obstructive gallstones 1. The complex causes for NCD necessitate improved clinical practice guidelines for the care of infants with cholestasis. Hence, joint general recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition are available for evaluation of NCD in infants, which identify: 1) the measurement of total and conjugated (direct) serum bilirubin for babies at 2 weeks of age; 2) physical examination for hepatomegaly, splenomegaly and appearance of illness; 3) direct visualization of stool pigment; 4) intra-operative cholangiogram and histological examination of the duct remnant 1. However, infants with biliary atresia usually appear healthy and grow normally, which may deceive the parent or physician into believing that the jaundice is physiologic or caused by breastfeeding 6. Thus, development of new or additional biomarkers is considered important in order to improve the care of NCD. Among the most studied causes of NCD in recent years are metabolic diseases and disorders of bile transport and BA synthesis. Cumulative evidence suggests that the composition and function of the gut microbiota plays a prominent role in the occurrence of human metabolic diseases, including type II diabetes 7 , obesity 8 , liver disease 9,10 , atherosclerosis 11...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.