A new method to form colloidally stable oligosaccharide-grafted synthetic polymer particles has been developed. The oligosaccharides, of weight-average degree of polymerization approximately 38, were obtained by enzymatic debranching of amylopectin. Through the use of a cerium(IV)-based redox initiation process, oligosaccharide chains are grafted onto a synthetic polymer colloid comprising electrostatically stabilized poly(methyl methacrylate) or polystyrene latex particles swollen with methyl methacrylate monomer. Ce(IV) creates a radical species on these oligosaccharides, which then propagates, initially with aqueous-phase monomer, then with the methyl methacrylate monomer inside the particles. Ultracentrifugation, NMR, and total starch analyses together prove that the grafting process has occurred, with at least 7.7 wt % starch grafted and a grafting efficiency of 33%. The surfactant used in latex preparation was removed by dialysis, resulting in particles colloidally stabilized with only linear starch as a steric stabilizer. The debranched starch that comprises these oligosaccharides is found to be a remarkably effective colloidal stabilizer, albeit at low electrolyte concentration, stabilizing particles with very sparse surface coverage.
The synthesis of a new olefin-derived acrylate monomer, 1-methyl-1-propylhexyl acrylate (1-MPHA), starting from 1-pentene, is reported. 1-MPHA was found to be polymerizable to high conversion by conventional free radical means. Homopolymerization of the monomer in benzene and toluene progressed faster in toluene than in bulk. Kinetic studies show 1-MPHA to be a relatively slow reacting monomer. The homopolymer of 1-MPHA was found to be thermally stable to about 200 °C, and soft at room temperature, with a T g of -43 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.