Cutting transport is an important goal in drilling operation especially in horizontal and deviated wells since it can cause problems such as stuck pipe, circulation loss and high torque and drag. To this end, this article focused on the affecting parameters on the cutting transport by computational fluid dynamic (CFD) modeling and real operational data. The effect of drilling fluid and cutting density on the pressure drop, deposit ratio and string stress on the cutting transport has been investigated. A systematic validation study is presented by comparing the simulation results against published experimental database. The results showed that by increasing two times of drilling fluid density/operational density, cutting precipitation ratio decreased 32.9% and stress applied on the drilling string and pressure drop increased 4.59 and 5.97%, respectively. By increasing two times of drilling cutting density/operational density, cutting precipitation ratio increased 200%. Also, there is an optimum point for drilling cutting density at 8.5 in which stress applied on the drilling string will be minimum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.