The CoCrFeMnNi high-entropy alloy (HEA) is a potential structural material, whose cyclic plasticity is essential for its safety assessment in service. Here, the effects of twin boundaries (TBs) and temperature on the cyclic plasticity of CoCrFeMnNi HEA were studied by the molecular dynamics (MD) simulation. The simulation results showed that a significant amount of lattice disorders were generated due to the interactions between partial dislocations in CoCrFeMnNi HEA during the cyclic deformation. Lattice disorder impeded the reverse movement of dislocations and then weakened Bauschinger’s effect in the HEA. The cyclic plasticity of CoCrFeMnNi HEA, especially Bauschinger’s effect, depends highly on the temperature and pre-existing TBs. Such dependence lies in the effects of temperature and pre-existing TBs on the extent of lattice disorder. This study helps further understand the cyclic plasticity of CoCrFeMnNi HEA from the atomic scale.
Dual-phase high-entropy alloys (DP-HEAs) have been proved to be a kind of promising materials that exhibit a combination of excellent strength and ductility. Previous studies have emphasized the effect of interface and phase volume fraction on mechanical performance in DP-HEAs. However, the deformation mechanisms such as interplays between dislocations and the constituent phases have not been fully understood. Particularly, the research concerning plastic anisotropy in DP-HEAs is still lacking. Here, molecular dynamics simulations are performed to probe the effect of loading orientation on plasticity in the nano-laminated face-centered cubic (FCC)/hexagonal close-packed (HCP) CoNiCrFeMn DP-HEA. Results reveal that a switch from strengthening to softening and back to strengthening is closely related to the activation of different slip systems when tailoring the inclination angles of the nanolaminates with respect to the tensile direction from 0° to 90°. Slip transfer across phase boundaries, phase transformation and the nucleation of shear bands dominate the plasticity in the samples with low, medium and high inclination angles, respectively. Furthermore, the evolution of microstructures, such as dislocations, stacking faults, and FCC/HCP phase are analyzed to study the underlying deformation mechanisms. These results can help understand the plastic anisotropy of DP-HEAs and design alloys with excellent mechanical properties for engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.