To trace the evolution of canine coronavirus (CCoV), 201 stool samples from diarrheic dogs in northeast China were subjected to reverse transcription-polymerase chain reactions (RT-PCRs) targeting the partial M and S genes of CCoV, followed by an epidemiological analysis. M gene RT-PCRs showed that 28.36% (57/201) of the samples were positive for CCoV; of the 57 positive samples, CCoV-I and CCoV-II accounted for 15.79% (9/57) and 84.21% (48/57), respectively. A sequence comparison of the partial M gene revealed nucleotide homologies of 88.4%–100% among the 57 CCoV strains, and 88.7%–96.2% identity between the 57 CCoV strains and the Chinese reference strain HF3. The CCoV-I and CCoV-II strains exhibited genetic diversity when compared with reference strains from China and other countries. The 57 CCoV strains exhibited high co-infection rates with canine kobuvirus (CaKV) (33.33%) and canine parvovirus-2 (CPV-2) (31.58%). The CCoV prevalence in diarrheic dogs differed significantly with immunization status, regions, seasons, and ages. Moreover, 28 S genes were amplified from the 57 CCoV-positive samples, including 26 CCoV-IIa strains, one CCoV-IIb strain, and one CCoV-I strain. A sequence comparison of the partial S gene revealed 86.3%–100% nucleotide identity among the 26 CCoV-IIa strains, and 89.6%–92.2% identity between the 26 CCoV-IIa strains and the Chinese reference strain V1. The 26 CCoV-IIa strains showed genetic diversity when compared with reference strains from China and other countries. Our data provide evidence that CCoV-I, CCoV-IIa, and CCoV-IIb strains co-circulate in the diarrhoetic dogs in northeast China, high co-infection rates with CaKV and CPV-2 were observed, and the CCoV-II strains exhibited high prevalence and genetic diversity.
We evaluated the efficacy of three vaccine formulations containing different combinations of proteins (43K OMP, leukotoxin recombinant protein PL4 and hemolysin recombinant protein H2) and killed whole cell Fusobacterium necrophorum in preventing liver abscess. Four subcutaneous vaccines were formulated: vaccine 1 (43K OMP), vaccine 2 (PL4 and H2), vaccine 3 (43K OMP, PL4 and H2), and vaccine 4 (killed whole bacterial cell). 43K OMP, PL4, and H2 proteins were produced by using recombinant protein expression. To evaluate vaccine efficacy, we randomly allocated 50 BALB/c female mice to one of five different treatment groups: PBS control group, vaccine 1, vaccine 2, vaccine 3, and vaccine 4. Mice were vaccinated three times, with 14 days between each immunization. After immunization, the mice were challenged with F. necrophorum. The three key findings of this study are as follows: (1) Vaccine 3 has enabled mice to produce higher antibody titer following bacterial challenge, (2) in the liver pathology of mice, the vaccine 3 liver showed the least pathology, and (3) all four vaccines produced high levels of antibodies and cytokines in mice, but the level of vaccine 3 was the highest. Based on our results, it has been demonstrated that a mixture of F. necrophorum 43K OMP, PL4, and H2 proteins inoculated with mice can achieve protection against liver abscess in mice. Our research may therefore provide the basis for the development of a vaccine against F. necrophorum bovine infections.
Resolving the heavy metal resistance mechanisms of microbes is crucial for understanding the bioremediation of the ecological environment. In this study, a multiple heavy metal resistance bacterium, Pseudoxanthomonas spadix ZSY‐33 was isolated and characterized. The copper resistance mechanism was revealed by analysis of the physiological traits, copper distribution, and genomic and transcriptomic data of strain ZSY‐33 cultured with different concentrations of copper. The growth inhibition assay in basic medium showed that the growth of strain ZSY‐33 was inhibited in the presence of 0.5 mM copper. The production of extracellular polymeric substances increased at a lower concentration of copper and decreased at a higher concentration of copper. Integrative analysis of genomic and transcriptomic, the copper resistance mechanism in strain ZSY‐33 was elucidated. At a lower concentration of copper, the Cus and Cop systems were responsible for the homeostasis of intracellular copper. As the concentration of copper increased, multiple metabolism pathways, including the metabolism of sulfur, amino acids, and pro‐energy were cooperated with the Cus and Cop systems to deal with copper stress. These results indicated a flexible copper resistance mechanism in strain ZSY‐33, which may acquire from the long‐term interaction with the living environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.