Background:The cancer burden in the United States of America (USA) has decreased gradually. However, China is experiencing a transition in its cancer profiles, with greater incidence of cancers that were previously more common in the USA. This study compared the latest cancer profiles, trends, and determinants between China and USA.Methods:This was a comparative study using open-source data. Cancer cases and deaths in 2022 were calculated using cancer estimates from GLOBOCAN 2020 and population estimates from the United Nations. Trends in cancer incidence and mortality rates in the USA used data from the Surveillance, Epidemiology, and End Results program and National Center for Health Statistics. Chinese data were obtained from cancer registry reports. Data from the Global Burden of Disease 2019 and a decomposition method were used to express cancer deaths as the product of four determinant factors.Results:In 2022, there will be approximately 4,820,000 and 2,370,000 new cancer cases, and 3,210,000 and 640,000 cancer deaths in China and the USA, respectively. The most common cancers are lung cancer in China and breast cancer in the USA, and lung cancer is the leading cause of cancer death in both. Age-standardized incidence and mortality rates for lung cancer and colorectal cancer in the USA have decreased significantly recently, but rates of liver cancer have increased slightly. Rates of stomach, liver, and esophageal cancer decreased gradually in China, but rates have increased for colorectal cancer in the whole population, prostate cancer in men, and other seven cancer types in women. Increases in adult population size and population aging were major determinants for incremental cancer deaths, and case-fatality rates contributed to reduced cancer deaths in both countries.Conclusions:The decreasing cancer burden in liver, stomach, and esophagus, and increasing burden in lung, colorectum, breast, and prostate, mean that cancer profiles in China and the USA are converging. Population aging is a growing determinant of incremental cancer burden. Progress in cancer prevention and care in the USA, and measures to actively respond to population aging, may help China to reduce the cancer burden.
Objective To estimate the effectiveness of mRNA covid-19 vaccines against symptomatic infection and severe outcomes (hospital admission or death). Design Test negative design study. Setting Ontario, Canada between 14 December 2020 and 19 April 2021. Participants 324 033 community dwelling people aged ≥16 years who had symptoms of covid-19 and were tested for SARS-CoV-2. Interventions BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine. Main outcome measures Laboratory confirmed SARS-CoV-2 by reverse transcription polymerase chain reaction (RT-PCR) and hospital admissions and deaths associated with SARS-CoV-2 infection. Multivariable logistic regression was adjusted for personal and clinical characteristics associated with SARS-CoV-2 and vaccine receipt to estimate vaccine effectiveness against symptomatic infection and severe outcomes. Results Of 324 033 people with symptoms, 53 270 (16.4%) were positive for SARS-CoV-2 and 21 272 (6.6%) received at least one dose of vaccine. Among participants who tested positive, 2479 (4.7%) were admitted to hospital or died. Vaccine effectiveness against symptomatic infection observed ≥14 days after one dose was 60% (95% confidence interval 57% to 64%), increasing from 48% (41% to 54%) at 14-20 days after one dose to 71% (63% to 78%) at 35-41 days. Vaccine effectiveness observed ≥7 days after two doses was 91% (89% to 93%). Vaccine effectiveness against hospital admission or death observed ≥14 days after one dose was 70% (60% to 77%), increasing from 62% (44% to 75%) at 14-20 days to 91% (73% to 97%) at ≥35 days, whereas vaccine effectiveness observed ≥7 days after two doses was 98% (88% to 100%). For adults aged ≥70 years, vaccine effectiveness estimates were observed to be lower for intervals shortly after one dose but were comparable to those for younger people for all intervals after 28 days. After two doses, high vaccine effectiveness was observed against variants with the E484K mutation. Conclusions Two doses of mRNA covid-19 vaccines were observed to be highly effective against symptomatic infection and severe outcomes. Vaccine effectiveness of one dose was observed to be lower, particularly for older adults shortly after the first dose.
volution of the SARS-CoV-2 virus over the course of the COVID-19 pandemic has resulted in the emergence of four variants of concern (VOC)-Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2)-to date. Alpha was first detected in the
Enterovirus 71 (EV71) has emerged as a major cause of neurological disease following the near eradication of poliovirus. Accumulating evidence suggests that mammalian microRNAs (miRNAs), a class of noncoding RNAs of 18 to 23 nucleotides (nt) with important regulatory roles in many cellular processes, participate in host antiviral defenses. However, the roles of miRNAs in EV71 infection and pathogenesis are still unclear. Here, hsa-miR-296-5p expression was significantly increased in EV71-infected human cells. As determined by virus titration, quantitative real-time PCR (qRT-PCR), and Western blotting, overexpression of hsa-miR-296-5p inhibited, while inhibition of endogenous hsa-miR-296-5p facilitated, EV71 infection. Additionally, two potential hsa-miR-296-5p targets (nt 2115 to 2135 and nt 2896 to 2920) located in the EV71 genome (strain BrCr) were bioinformatically predicted and validated by luciferase reporter assays and Western blotting. Genomic alignment of various EV71 strains revealed synonymous mutations in hsa-miR-296-5p target sequences. Furthermore, the introduction of synonymous mutations into the EV71 BrCr genome by site-directed mutagenesis impaired the viral inhibitory effects of hsa-miR-296-5p and facilitated mutant virus infection. Meanwhile, compensatory mutations in corresponding hsa-miR-296-5p target sequences of the EV71 HeN strain (GenBank accession number JN256064) restored the inhibitory effects of the miRNA. These results indicate that hsa-miR-296-5p inhibits EV71 replication by targeting the viral genome. Our findings support the notion that cellular miRNAs can inhibit virus infection and that the virus mutates to escape suppression by cellular miRNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.