Deep Neural Networks (DNNs) are extensively deployed in today's safety-critical autonomous systems thanks to their high performance. However, they are known to make mistakes unpredictably, e.g., a DNN may misclassify an object if it is used for perception, or issue unsafe control commands if it is used for planning and control. One common cause for such unpredictable mistakes is Out-of-Distribution (OOD) inputs, i.e., test inputs that fall outside of the distribution of the training dataset. In this paper, we present a framework for OOD detection based on outlier detection in the hidden layers of a DNN by applying Isolation Forest (IF) and Local Outlier Factor (LOF) techniques. Extensive experimental evaluation indicates that LOF is a promising method in terms of both the Machine Learning metrics of precision, recall, F1 score and accuracy, and computational efficiency during testing.
The Controller Area Network (CAN) is a ubiquitous bus protocol present in the Electrical/Electronic (E/E) systems of almost all vehicles. It is vulnerable to a range of attacks once the attacker gains access to the bus through the vehicle’s attack surface. We address the problem of Intrusion Detection on the CAN bus, and present a series of methods based on two classifiers trained with Auxiliary Classifier Generative Adversarial Network (ACGAN) to detect and assign fine-grained labels to Known Attacks, and also detect the Unknown Attack class in a dataset containing a mixture of (Normal + Known Attacks + Unknown Attack) messages. The most effective method is a cascaded two-stage classification architecture, with the multi-class Auxiliary Classifier in the first stage for classification of Normal and Known Attacks, passing Out-of-Distribution (OOD) samples to the binary Real-Fake Classifier in the second stage for detection of the Unknown Attack class. Performance evaluation demonstrate that our method achieves both high classification accuracy and low runtime overhead, making it suitable for deployment in the resource-constrained in-vehicle environment.
Reinforcement learning (RL) is an effective approach to developing control policies by maximizing the agent's reward. Deep reinforcement learning uses deep neural networks (DNNs) for function approximation in RL, and has achieved tremendous success in recent years. Large DNNs often incur significant memory size and computational overheads, which may impede their deployment into resource-constrained embedded systems. For deployment of a trained RL agent on embedded systems, it is necessary to compress the policy network of the RL agent to improve its memory and computation efficiency. In this article, we perform model compression of the policy network of an RL agent by leveraging the relevance scores computed by layer-wise relevance propagation (LRP), a technique for Explainable AI (XAI), to rank and prune the convolutional filters in the policy network, combined with fine-tuning with policy distillation. Performance evaluation based on several Atari games indicates that our proposed approach is effective in reducing model size and inference time of RL agents. We also consider robust RL agents trained with RADIAL-RL versus standard RL agents, and show that a robust RL agent can achieve better performance (higher average reward) after pruning than a standard RL agent for different attack strengths and pruning rates.
In an open world with a long-tail distribution of input samples, Deep Neural Networks (DNNs) may make unpredictable mistakes for Out-of-Distribution (OOD) inputs at test time, despite high levels of accuracy obtained during model training. OOD detection can be an effective runtime assurance mechanism for safe deployment of machine learning algorithms in safety–critical applications such as medical imaging and autonomous driving. A large number of OOD detection algorithms have been proposed in recent years, with a wide range of performance metrics in terms of accuracy and execution time. For real-time safety–critical applications, e.g., autonomous driving, timing performance is of great importance in addition to accuracy. We perform a comprehensive and systematic benchmark study of multiple OOD detection algorithms in terms of both accuracy and execution time on different hardware platforms, including a powerful workstation and a resource-constrained embedded device, equipped with both CPU and GPU. We also profile and analyze the internal details of each algorithm to identify the performance bottlenecks and potential for GPU acceleration. This paper aims to provide a useful reference for the practical deployment of OOD detection algorithms for real-time safety–critical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.