The acceleration of global urban expansion constantly occupies high-quality cropland and affects regional food security. The implementation of cropland protection policies has alleviated the pressure of cropland loss worldwide, and thus keeping a dynamic balance of cereal production. Such a displacement of cereal production from the lost cropland to the supplemented cropland has resulted in the massive losses of natural habitats (such as forests, grasslands, and wetlands) as well as ecosystem service values. However, the impact of cereal production displacement caused by different cropland supplement strategies has not been concerned. Therefore, taking China (mainland) as a case, this study used the LANDSCAPE model to simulate cereal production displacement caused by urban expansion and cropland supplement between 2020 and 2040, based on three scales of the Chinese administration system (i.e., the national level, the provincial level, and the municipal level). The natural habitat loss and corresponding ecosystem service value (ESV) loss were assessed. The results show that the national-scale cereal displacement will lead to a large reclamation of cropland in North China, causing the most natural habitat loss (5090 km2), and the least ESV loss (46.53 billion yuan). Cereal production displacement at the provincial and municipal scales will lead to fewer natural habitat losses (4696 km2 and 4954 km2, respectively), but more ESV losses (54.16 billion yuan and 54.02 billion yuan, respectively). Based on the national food security and ecological conservation in China, this study discussed the reasons for the ecological effects of cereal production displacement, direct and indirect natural habitat loss of urban expansion, and cropland protection policies in China. We suggest that China’s cropland protection policy should emphasize avoiding large-scale cropland displacement and occupation of natural habitat with high ESV for cropland supplement.
Cropland displacement, as an important characteristic of cropland change, places more emphasis on changes in spatial location than on quantity. The effects of cropland displacement on global and regional food production are of general concern in the context of urban expansion. Few studies have explored scale-effects, however, where cropland is displaced not only within, but also outside, the administrative boundary of a certain region. This study used a spatially explicit model (LANDSCAPE) to simulate the potential cropland displacement caused by urban land expansion from 2020 to 2040 at four scales of the Chinese administration system (national, provincial, municipal, and county levels). The corresponding changes in potential cereal production were then assessed by combining cereal productivity data. The results show that 4700 km 2 of cropland will be occupied by urban expansion by 2040, and the same amount of cropland will be supplemented by forest, grassland, wetland, and unused land. The potential loss of cropland will result in the loss of 3.838×10 6 tons of cereal production, and the additional cropland will bring 3.546×10 6 tons, 3.831×10 6 tons, 3.836×10 6 tons, and 3.528×10 6 tons of potential cereal production in SN (national scale), SP (provincial scale), SM (municipal scale), and SC (county scale), respectively. Both SN and SC are observed to make a huge difference in cereal productivity between the lost and the supplemented cropland. We suggest that China should focus on the spatial allocation of cropland during large-scale displacement, especially at the national level.
A cropland system is one of the most sensitive socio-ecological systems to climate change, such as drought and flood. Facing frequent extreme weather events worldwide, how to improve cropland system resilience to climate change (CSRCC) and thus ensure food production has been concerned. Although a small number of studies have attempted to evaluate CSRCC through single or multiple indicators, few studies have considered the perspective of the three basic capacities of resilience (i.e., robustness, adaptability, and transformability), which could ignore the dynamic characteristics of cropland system resilience against shocks within a certain period. Therefore, this study first constructs an evaluation index system from the three capacities of system resilience. Then, taking Hubei province, China, as a case and comprehensively using the methods of Delphi, AHP, and TOPSIS to assess the spatio-temporal characteristics of CSRCC at the municipal scale from 2011 to 2018. On this basis, the regional disparities of CSRCC are analyzed by using the Theil coefficient. The results show that the CSRCC of Hubei province fluctuates on a downward trend, with the lowest in 2017 and the highest in 2013. Most municipalities have witnessed a pattern of fluctuated decline, except for a few ones in the plains, such as Wuhan and Jingmen. Generally, municipalities in the plains have greater scores, while some municipalities in the southern and eastern hilly regions show higher adaptability and transformability. In addition, adaptability contributes the least to the CSRCC at the municipal scale. At last, indicator selection against different research objects, influencing mechanism of CSRCC, and policy implications are discussed. This study is expected to provide a reference for the practice in sustainable management and utilization of cropland systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.