In this paper the coal-fired power plant with CO2 capture by integrating MCFCs system and the integrated coal gasification with CO2 capture by integrating MCFCs combined cycle system are compared with each other in different ways. The effects of the key parameters of MCFC on the performance of two systems, such as CO2 utilization factor, fuel utilization factor and the current density of MCFC, have been analyzed and compared. Aspen Plus soft is used to develop the system models and the key parameters of MCFC are calculated, analyzed and optimized. The flue gas of the coal-fired power plant (CFPP) or the Integrated Gasification Combined Cycle (IGCC) system is used as the reactant gas of MCFC cathode side, reacting with fuel in the anode side and producing power. The anode exhaust gas burns with pure oxygen in the afterburner. The CO2 in the flue gas is further concentrated and captured with the lower energy consumption. The results show that, the efficiency of the coal-fired power plant integrating MCFCs system is about 45.75% when the CO2 capture rate is 88.07%, and the efficiency of the IGCC system integrating MCFCs is about 47.31% when the CO2 capture rate is 88.14%. Achievements in this paper will provide the valuable reference for CO2 capture of coal-fired power plant and IGCC with low energy penalty
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.