Layout problems are an engineering task that heavily relies on project experience. During the design of a plant, various factors need to be considered. Most previous efforts on industrial layout design have focused on the arrangement of facilities in a plant. However, the area-wide layout was not thoroughly studied and the relationship between plant layout and area-wide layout was rarely mentioned. In this work, the key plant that has the greatest impact on the industrial area is figured out first, and then the coupling relationships between the key plant and the industrial area are studied by changing the occupied area and length-width ratio of the key plant. Both of them are achieved by changing the floor number. A hybrid algorithm involving the genetic algorithm (GA) and surplus rectangle fill algorithm (SRFA) is applied. Various constraints are considered to make the layout more reasonable and practical. In the case study, a refinery with 20 plants is studied and the catalytic cracking plant is found to be the key plant. After the retrofit, the total cost of the refinery is 1,806,100 CNY/a less than that before, which illustrates the effectiveness of the method.
Plant layout design is a complex task requiring a wealth of engineering experience. A well-designed layout can extraordinarily reduce various costs, so layout study is of great value. To promote the research depth, plenty of considerations have been taken. However, an actual plant may have several frames and how to distribute facilities and determine the location of them in the different frames has not been well studied. In this work, frames are set as a special kind of inner structure and are added into the model to assign facilities into several blocks. A quantitative method for assigning facilities is proposed to let the number of cross-frame connections be minimized. After allocating the facilities into several blocks, each frame is optimized to obtain initial frame results. With designer decisions and cross-frame flow information, the relative locations of frames are determined and then the internal frame layouts are optimized again to reach the coupling optimization between frame and plant layout. Minimizing the total cost involving investment and operating costs is set to be the objective. In the case study, a plant with 138 facilities and 247 material connections is studied. All the facilities are assigned into four frames, and only 17 connections are left to be cross-frame ones. Through the two optimizations of each frame, the length of cross-frame connections reduces by 582.7 m, and the total cost decreases by 4.7 × 105 ¥/a. Through these steps, the idea of frame is successfully applied and the effectiveness of the proposed methodology is proved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.