van der Waals (vdW) heterostructures based on atomically thin 2D materials have led to a new era in next-generation optoelectronics due to their tailored energy band alignments and ultrathin morphological features, especially in photodetectors. However, these photodetectors often show an inevitable compromise between photodetectivity and photoresponsivity with one high and the other low. Herein, a highly sensitive WSe /SnS photodiode is constructed on BN thin film by exfoliating each material and manually stacking them. The WSe /SnS vdW heterostructure shows ultralow dark currents resulting from the depletion region at the junction and high direct tunneling current when illuminated, which is confirmed by the energy band structures and electrical characteristics fitted with direct tunneling. Thus, the distinctive WSe /SnS vdW heterostructure exhibits both ultrahigh photodetectivity of 1.29 × 10 Jones (I /I ratio of ≈10 ) and photoresponsivity of 244 A W at a reverse bias under the illumination of 550 nm light (3.77 mW cm ).
Persistent inflammatory responses participate in the pathogenesis of adverse ventricular remodeling after myocardial infarction (MI). We hypothesized that regulatory T (Treg) cells modulate inflammatory responses, attenuate ventricular remodeling and subsequently improve cardiac function after MI. Acute MI was induced by ligation of the left anterior descending coronary artery in rats. Infiltration of Foxp3(+) Treg cells was detected in the infarcted heart. Expansion of Treg cells in vivo by means of adoptive transfer as well as a CD28 superagonistic antibody (JJ316) resulted in an increased number of Foxp3(+) Treg cells in the infarcted heart. Subsequently, rats with MI showed improved cardiac function following Treg cells transfer or JJ316 injection. Interstitial fibrosis, myocardial matrix metalloproteinase-2 activity and cardiac apoptosis were attenuated in the rats that received Treg cells transfer. Infiltration of neutrophils, macrophages and lymphocytes as well as expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β were also significantly decreased, and the CD8(+) cardiac-specific cytotoxic T lymphocyte response was inhibited. Expression of interleukin (IL)-10 in the heart, however, was increased. Additional studies in vitro indicated that Treg cells directly protect neonatal rat cardiomyocytes against LPS-induced apoptosis, and this protection depends on the cell-cell contact and IL-10 expression. Furthermore, Treg cells inhibited proinflammatory cytokines production by cardiomyocytes. These data demonstrate that Treg cells serve to protect against adverse ventricular remodeling and contribute to improve cardiac function after myocardial infarction via inhibition of inflammation and direct protection of cardiomyocytes.
Crystal organometal halide perovskites with specific morphologies and unique optoelectronic properties have extended their applications into the whole optoelectronic field.
Infrared light detection is generally limited by the intrinsic bandgap of semiconductors, which suppresses the freedom in infrared light photodetector design and hinders the development of high‐performance infrared light photodetector. In this work, for the first time infrared light (1030 nm) photodetectors are fabricated based on WS2/MoS2 heterostructures. Individual WS2 and MoS2 have no response to infrared light. The origin of infrared light response for WS2/MoS2 comes from the strong interlayer coupling which shrinks the energy interval in the heterojunction area thus rendering heterostructures longer wavelength detection ability compared to individual components. Considering the low light absorption due to indirect bandgap essence of few layers WS2/MoS2 heterostructures, its infrared responsivity is further enhanced with at most ≈25 times but the fast response rate is maintained via surface plasmon resonance (SPR). Such an interlayer coupling induced infrared light response and surface plasmon resonance enhancement strategy paves the way for high‐performance infrared light photodetection of infinite freedom in design.
Two dimensional (2D) magnetic materials display enormous application potential in spintronic fields. However, most of currently reported magnetic materials are van der Waals layered structure that is easy to be isolated via exfoliation method. By contrast, the studies on non-van der Waals ultrathin magnetic materials are rare, largely due to the difficulty in fabrication. Rhombohedral Cr 2 S 3 , an intensively studied antiferromagnetic transition metal chalcogenide with Neel temperature of ≈120 K, has a typical non-van der Waals structure. Restricted by the strong covalent bonding in all the three dimensions of non-van der Waals structure, the synthesis of ultrathin Cr 2 S 3 single crystals is still a challenge that is not achieved yet. Besides, the study on the Raman modes of rhombohedral Cr 2 S 3 is also absent. Herein, by employing space-confined chemical vapor deposition strategy, ultrathin rhombohedral Cr 2 S 3 single crystals with a thickness down to ≈2.5 nm for the first time are successfully grown. Moreover, a systematically investigation is also conducted on the Raman vibrations of ultrathin rhombohedral Cr 2 S 3 . With the aid of angle-resolved polarized Raman technique, the Raman modes of rhombohedral Cr 2 S 3 for the first time based on crystal symmetry and Raman selection rules are rationally assigned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.