Vision-based object detection technology plays a very important role in the field of computer vision. It is widely used in many machine vision applications. However, in the specific application scenarios, like a solid waste sorting system, it is very difficult to obtain good accuracy due to the color information of objects that is badly damaged. In this work, we propose a novel multimodal convolutional neural network method for RGB-D solid waste object detection. The depth information is introduced as the new modal to improve the object detection performance. Our method fuses two individual features in multiple scales, which forms an end-to-end network. We evaluate our method on the self-constructed solid waste data set. In comparison with single modal detection and other popular cross modal fusion neural networks, our method achieves remarkable results with high validity, reliability, and real-time detection speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.