SUMMARY Signaling through RAS/MAP kinase pathway is central to biology. ERK has long been perceived as the only substrate for MEK. Herein we report that HSF1, the master regulator of the proteotoxic stress response, is a new MEK substrate. Beyond mediating cell-environment interactions, the MEK-HSF1 regulation impacts malignancy. In tumor cells, MEK blockade inactivates HSF1 and thereby provokes proteomic chaos, presented as protein destabilization, aggregation, and, strikingly, amyloidogenesis. Unlike their non-transformed counterparts, tumor cells are particularly susceptible to proteomic perturbation and amyloid induction. Amyloidogenesis is tumor-suppressive, reducing in vivo melanoma growth and contributing to the potent anti-neoplastic effects of proteotoxic stressors. Our findings unveil a key biological function of the oncogenic RAS-MEK signaling in guarding proteostasis and suppressing amyloidogenesis. Thus, proteomic instability is an intrinsic feature of malignant state and, disrupting the fragile tumor proteostasis to promote amyloidogenesis may be a feasible therapeutic strategy.
piRNAs (Piwi-interacting small RNAs) engage Piwi Argonautes to silence transposons and promote fertility in animal germlines. Genetic and computational studies have suggested that C. elegans piRNAs tolerate mismatched pairing and in principle could target every transcript. Here we employ in vivo cross-linking to identify transcriptome-wide interactions between piRNAs and target RNAs. We show that piRNAs engage all germline mRNAs and that piRNA binding follows microRNA-like pairing rules. Targeting correlates better with binding energy than with piRNA abundance, suggesting that piRNA concentration does not limit targeting. In mRNAs silenced by piRNAs, secondary small RNAs accumulate at the center and ends of piRNA binding sites. In germline-expressed mRNAs, however, targeting by the CSR-1 Argonaute correlates with reduced piRNA binding density and suppression of piRNA-associated secondary small RNAs. Our findings reveal physiologically important and nuanced regulation of individual piRNA targets and provide evidence for a comprehensive post-transcriptional regulatory step in germline gene expression.
piRNAs (Piwi-interacting small RNAs) engage Piwi Argonautes to silence transposons and promote fertility in animal germlines. Genetic and computational studies have suggested that C. elegans piRNAs tolerate mismatched pairing and in principle could target every transcript. Here we employ in vivo cross-linking to identify transcriptomewide interactions between piRNAs and target RNAs. We show that piRNAs engage all germline mRNAs and that piRNA binding follows microRNA-like pairing rules.Targeting correlates better with binding energy than with piRNA abundance, suggesting that piRNA concentration does not limit targeting. In mRNAs silenced by piRNAs, secondary small RNAs accumulate at the center and ends of piRNA binding sites. In germline-expressed mRNAs, however, targeting by the CSR-1 Argonaute correlates with reduced piRNA binding density and suppression of piRNA-associated secondary small RNAs. Our findings reveal physiologically important and nuanced regulation of individual piRNA targets and provide evidence for a comprehensive posttranscriptional regulatory step in germline gene expression.3
To cope with proteotoxic stress, cells attenuate protein synthesis. However, the precise mechanisms underlying this fundamental adaptation remain poorly defined. Here we report that mTORC1 acts as an immediate cellular sensor of proteotoxic stress. Surprisingly, the multifaceted stress-responsive kinase JNK constitutively associates with mTORC1 under normal growth conditions. Upon activation by proteotoxic stress, JNK phosphorylates both RAPTOR at Ser863 and mTOR at Ser567, causing partial disintegration of mTORC1 and subsequent translation inhibition. Importantly, HSF1, the central player in the proteotoxic stress response (PSR), preserves mTORC1 integrity and function by inactivating JNK, independently of its canonical transcriptional action. Thereby, HSF1 translationally augments the PSR. Beyond promoting stress resistance, this intricate HSF1-JNK-mTORC1 interplay, strikingly, regulates cell, organ and body sizes. Thus, these results illuminate a unifying mechanism that controls stress adaptation and growth.
Numerous extrinsic and intrinsic insults trigger the HSF1-mediated proteotoxic stress response (PSR), an ancient transcriptional program that is essential to proteostasis and survival under such conditions. In contrast to its well-recognized mobilization by proteotoxic stress, little is known about how this powerful adaptive mechanism reacts to other stresses. Surprisingly, we discovered that metabolic stress suppresses the PSR. This suppression is largely mediated through the central metabolic sensor AMPK, which physically interacts with and phosphorylates HSF1 at Ser121. Through AMPK activation, metabolic stress represses HSF1, rendering cells vulnerable to proteotoxic stress. Conversely, proteotoxic stress inactivates AMPK and thereby interferes with the metabolic stress response. Importantly, metformin, a metabolic stressor and popular anti-diabetic drug, inactivates HSF1 and provokes proteotoxic stress within tumor cells, thereby impeding tumor growth. Thus, these findings uncover a novel interplay between the metabolic stress sensor AMPK and the proteotoxic stress sensor HSF1 that profoundly impacts stress resistance, proteostasis, and malignant growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.