Using High-Throughput Microfluidic Enzyme Kinetics (HT-MEK), we measured over 9,000 inhibition curves detailing impacts of 1,004 single-site mutations throughout the Alkaline Phosphatase PafA on binding affinity for two transition state analogs (TSAs), vanadate and tungstate. As predicted by catalytic models invoking transition state complementary, mutations to active site and active site-contacting residues had highly similar impacts on catalysis and TSA binding. Unexpectedly, most mutations to more distal residues which reduced catalysis had little or no impact on TSA binding and many even increased affinity for tungstate. These disparate effects are accounted for by a model in which distal mutations alter the enzyme's conformational landscape and increase occupancy of microstates that are catalytically less effective but better able to accommodate larger transition state analogs. In support of this model, glycine substitutions (rather than valine) were more likely to increase tungstate affinity, presumably due to increased conformational flexibility and increased occupancy of previously disfavored microstates. These results indicate that residues throughout an enzyme provide specificity for the transition state and discriminate against analogs that are larger only by tenths of an Ångström. Thus, engineering enzymes that rival the most powerful natural enzymes will likely require consideration not just of residues in and around the active site, but also of more distal residues that shape the enzyme's conformational landscape and fine-tune the active site. In addition, the extensive functional communication between the active site and remote residues may provide interconnections needed for allostery and make allostery a highly evolvable trait.
Cryo-cooling has been nearly universally adopted to mitigate X-ray damage and facilitate crystal handling in protein X-ray crystallography. However, cryo X-ray crystallographic data provide an incomplete window into the ensemble of conformations that is at the heart of protein function and energetics. Room-temperature (RT) X-ray crystallography provides accurate ensemble information, and recent developments allow conformational heterogeneity (the experimental manifestation of ensembles) to be extracted from single-crystal data. Nevertheless, high sensitivity to X-ray damage at RT raises concerns about data reliability. To systematically address this critical issue, increasingly X-ray-damaged high-resolution data sets (1.02–1.52 Å resolution) were obtained from single proteinase K, thaumatin and lysozyme crystals at RT (277 K). In each case a modest increase in conformational heterogeneity with X-ray damage was observed. Merging data with different extents of damage (as is typically carried out) had negligible effects on conformational heterogeneity until the overall diffraction intensity decayed to ∼70% of its initial value. These effects were compared with X-ray damage effects in cryo-cooled crystals by carrying out an analogous analysis of increasingly damaged proteinase K cryo data sets (0.9–1.16 Å resolution). X-ray damage-associated heterogeneity changes were found that were not observed at RT. This property renders it difficult to distinguish real from artefactual conformations and to determine the conformational response to changes in temperature. The ability to acquire reliable heterogeneity information from single crystals at RT, together with recent advances in RT data collection at accessible synchrotron beamlines, provides a strong motivation for the widespread adoption of RT X-ray crystallography to obtain conformational ensemble information.
Using high-throughput microfluidic enzyme kinetics (HT-MEK), we measured over 9,000 inhibition curves detailing impacts of 1,004 single-site mutations throughout the alkaline phosphatase PafA on binding affinity for two transition state analogs (TSAs), vanadate and tungstate. As predicted by catalytic models invoking transition state complementary, mutations to active site and active-site-contacting residues had highly similar impacts on catalysis and TSA binding. Unexpectedly, most mutations to more distal residues that reduced catalysis had little or no impact on TSA binding and many even increased tungstate affinity. These disparate effects can be accounted for by a model in which distal mutations alter the enzyme’s conformational landscape, increasing the occupancy of microstates that are catalytically less effective but better able to accommodate larger transition state analogs. In support of this ensemble model, glycine substitutions (rather than valine) were more likely to increase tungstate affinity (but not more likely to impact catalysis), presumably due to increased conformational flexibility that allows previously disfavored microstates to increase in occupancy. These results indicate that residues throughout an enzyme provide specificity for the transition state and discriminate against analogs that are larger only by tenths of an Ångström. Thus, engineering enzymes that rival the most powerful natural enzymes will likely require consideration of distal residues that shape the enzyme’s conformational landscape and fine-tune active-site residues. Biologically, the evolution of extensive communication between the active site and remote residues to aid catalysis may have provided the foundation for allostery to make it a highly evolvable trait.
Conformational ensembles underlie all protein functions. Thus, acquiring atomic-level ensemble models that accurately represent conformational heterogeneity is vital to deepen our understanding of how proteins work. Modeling ensemble information from X-ray diffraction data has been challenging, as traditional cryo-crystallography restricts conformational variability while minimizing radiation damage. Recent advances have enabled the collection of high quality diffraction data at ambient temperatures, revealing innate conformational heterogeneity and temperature-driven changes. Here, we used diffraction datasets for Proteinase K collected at temperatures ranging from 313 to 363K to provide a tutorial for the refinement of multiconformer ensemble models. Integrating automated sampling and refinement tools with manual adjustments, we obtained multiconformer models that describe alternative backbone and sidechain conformations, their relative occupancies, and interconnections between conformers. Our models revealed extensive and diverse conformational changes across temperature, including increased bound peptide ligand occupancies, different Ca2+ binding site configurations and altered rotameric distributions. These insights emphasize the value and need for multiconformer model refinement to extract ensemble information from diffraction data and to understand ensemble-function relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.