Bursting oscillations are ubiquitous in multi-time scale systems and have attracted widespread attention in recent years. However, research on experimental demonstration of the bursting oscillations induced by delayed bifurcation is very rarely reported. In this paper, a parametrically driven Rucklidge system is introduced and a distinct delayed behavior is observed when the time-varying parameter passes through the pitchfork bifurcation point. Different bursting patterns induced by such a delayed behavior are numerically investigated under different excitation amplitudes based on the fast–slow analysis method. Furthermore, in order to reproduce the bursting electronic signals and explore the underlying formation mechanisms experimentally, a real physical circuit of the parametrically driven Rucklidge system is developed by using off-the-shelf electronic devices. The real-time measurement results such as time series, phase portraits and transformed phase portraits are in good qualitative agreement with those obtained from the numerical computations. The experimental evidence to verify bursting oscillations induced by delayed pitchfork bifurcation is thus provided in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.