The pairing mechanism in cuprates remains as one of the most challenging issues in condensed matter physics. Recently, superconductivity was discovered in thin films of the infinite-layer nickelate Nd1-xSrxNiO2 (x = 0.12–0.25) which is believed to have the similar 3d9 orbital electrons as that in cuprates. Here we report single-particle tunneling measurements on the superconducting nickelate thin films. We find predominantly two types of tunneling spectra, one shows a V-shape feature which can be fitted well by a d-wave gap function with gap maximum of about 3.9 meV, another one exhibits a full gap of about 2.35 meV. Some spectra demonstrate mixed contributions of these two components. Combining with theoretical calculations, we attribute the d-wave gap to the pairing potential of the $${\mathrm{Ni - }}3d_{x^2 - y^2}$$
Ni-
3
d
x
2
−
y
2
orbital. Several possible reasons are given for explaining the full gap feature. Our results indicate both similarities and distinctions between the newly found Ni-based superconductors and cuprates.
The superconducting state is formed by the condensation of Cooper pairs and protected by the superconducting gap. The pairing interaction between the two electrons of a Cooper pair determines the gap function. Thus, it is pivotal to detect the gap structure for understanding the mechanism of superconductivity. In cuprate superconductors, it has been well established that the gap may have a
d
-wave function. This gap function has an alternative sign change in the momentum space. It is however hard to visualize this sign change. Here we report the measurements of scanning tunneling spectroscopy in Bi
2
Sr
2
CaCu
2
O
8+δ
and conduct the analysis of phase-referenced quasiparticle interference (QPI). We see the seven basic scattering vectors that connect the octet ends of the banana-shaped contour of Fermi surface. The phase-referenced QPI clearly visualizes the sign change of the
d
-wave gap. Our results illustrate an effective way for determining the sign change of unconventional superconductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.