The resulting maps of land use classification obtained by pixel-based methods often have salt-and-pepper noise, which usually shows a certain degree of cluttered distribution of classification image elements within the region. This paper carries out a study on crop classification and identification based on time series Sentinel images and object-oriented methods and takes the crop recognition and classification of the National Modern Agricultural Industrial Park in Jalaid Banner, Inner Mongolia, as the research object. It uses the Google Earth Engine (GEE) cloud platform to extract time series Sentinel satellite radar and optical remote sensing images combined with simple noniterative clustering (SNIC) multiscale segmentation with random forest (RF) and support vector machine (SVM) classification algorithms to classify and identify major regional crops based on radar and spectral features. Compared with the pixel-based method, the combination of SNIC multiscale segmentation and random forest classification based on time series radar and optical remote sensing images can effectively reduce the salt-and-pepper phenomenon in classification and improve crop classification accuracy with the highest accuracy of 98.66 and a kappa coefficient of 0.9823. This study provides a reference for large-scale crop identification and classification work.
Crop residue is an important component of farmland ecosystems, which is of great significance for increasing soil organic carbon, mitigating wind erosion and water erosion and conserving soil and water. Crop residue coverage (CRC) is an important parameter to characterize the number and distribution of crop residues, and also a key indicator of conservation tillage. In this study, the CRC of wheat was taken as the research object. Based on the high-resolution GF-1 satellite remote sensing imagery from China, decision tree (DT), gradient boosting decision tree (GBDT), random forest (RF), least absolute shrinkage and selection operator (LASSO), extreme gradient boosting regression (XGBR) and other machine learning algorithms were used to carry out the estimation of wheat CRC by remote sensing. In addition, the comparisons with sentinel-2 imagery data were also utilized to assess the potential of GF satellite data for CRC estimates. The results show the following: (1) Among the spectral indexes using shortwave infrared characteristic bands from sentinel-2 imagery, the dead fuel index (DFI) was the best for estimating wheat CRC, with an R2 of 0.54 and an RMSE of 10.26%. The ratio vegetation index (RVI) extracted from visible and near-infrared characteristic bands from GF-1 data performed the best, with an R2 of 0.46 and an RMSE of 11.39%. The spectral index extracted from GF-1 and sentinel-2 images had a significant response relationship with wheat residue coverage. (2) When only the characteristic bands from the visible and near-infrared spectral ranges were applied, the effects of the spatial resolution differences of different images on wheat CRC had to be taken into account. The estimations of wheat CRC with the high-resolution GF-1 data were significantly better than those with the Sentinel-2 data, and among multiple machine learning algorithms adopted to estimate wheat CRC, LASSO had the most stable capability, with an R2 of 0.46 and an RMSE of 11.4%. This indicates that GF-1 high-resolution satellite imagery without shortwave infrared bands has a good potential in applications of monitoring crop residue coverage for wheat, and the relevant technology and method can also provide a useful reference for CRC estimates of other crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.