Cyclooxygenase (COX)-2 is upregulated in hepatocellular carcinoma (HCC). However, the direct causative effect of COX-2 in spontaneous HCC formation remains unknown. We thus investigate the role and molecular pathogenesis of COX-2 in HCC by using liver-specific COX-2 transgenic (TG) mice. We found spontaneous HCC formation with elevated inflammatory infiltrates and neovessels in male TG mice (3/21, 14.3%), but not in any of male WT mice (0/19). Reduced representation bisulfite sequencing (RRBS) and gene expression microarrays were performed in the HCC tumor and non-HCC liver tissues to investigate the molecular mechanisms of COX-2-driven HCC. By RRBS, DNA promoter hypermethylation was identified in HCC from TG mice. Induction of promoter hypermethylation was associated with reduced tet methylcytosine dioxygenase 1 (TET1) expression by COX-2. TET1 could catalyze the conversion of 5-methylcytosine into 5-hydroxymethylcytosine (5hmC) and prevents DNA hypermethylation. In keeping with this, loss of 5hmC was demonstrated in COX-2-induced HCC. Consistently, COX-2 overexpression in human HCC cell lines could reduce both TET1 expression and 5hmc levels. Integrative analyses of DNA methylation and gene expression profiles further identified significantly downregulated genes including LTBP1, ADCY5 and PRKCZ by promoter methylation in COX-2-induced HCC. Reduced expression of LTBP1, ADCY5 and PRKCZ by promoter hypermethylation was further validated in human HCCs. Bio-functional investigation revealed that LTBP1 inhibited cell proliferation in HCC cell lines, suggesting its potential role as a tumor suppressor in HCC. Gene expression microarrays revealed that signaling cascades (AKT (protein kinase B), STK33 (Serine/Threonine kinase 33) and MTOR (mechanistic target of rapamycin) pathways) were enriched in COX-2-induced HCC. In conclusion, this study demonstrated for the first time that enhanced COX-2 expression in hepatocytes is sufficient to induce HCC through inducing promoter hypermethylation by reducing TET1, silencing tumor-suppressive genes and activating key oncogenic pathways. Inhibition of COX-2 represents a mechanism-based target for HCC prevention.
Synthetic phenolic antioxidants (SPAs) are closely correlated with human life due to their extensive usages, and increasing concerns have been raised on their biosafety. The previous controversial findings caused continuous debates on their potential endocrine disrupting effects. In the present study, four commonly used SPAs, including butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tert-butyl hydroquinone (TBHQ) and 2,2'-methylenebis(6-tert-butyl-4-methylphenol) (AO2246), were investigated for their estrogenic effects, and the results from in vitro screening assays showed SPAs themselves had negligible estrogen receptor binding affinities. Nevertheless, significant increase in E secretion was observed in H295R cells treated with SPAs, especially for BHA. The transcriptional levels of steroidogenic enzymes, including StAR, 3βHSD, CYP11B1, and CYP11B2 were up-regulated via the mediation of protein kinase A (PKA) signaling pathway. In vivo experiment confirmed that waterborne exposure to BHA disturbed E and testosterone (T) levels in zebrafish gonad, thus causing potential estrogenic effects through the regulation of hypothalamic-pituitary-gonadal-liver axis (HPGL-axis). Accordingly, this study has provided new insights for SPA-induced endocrine disrupting effects. Considering the allowable maximum level of individual BHA or in combination with TBHQ and BHT in foodstuffs (200 mg kg), the perturbation in steroidogenesis observed for relatively low concentrations of SPAs would need more public attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.