Fur appearance rendering is crucial for the realism of computer generated imagery, but is also a challenge in computer graphics for many years. Much effort has been made to accurately simulate the multiple-scattered light transport among fur fibers, but the computation cost is still very high, since the number of fur fibers is usually extremely large. In this paper, we aim at reducing the number of fur fibers while preserving realistic fur appearance. We present an aggregated fur appearance model, using one thick cylinder to accurately describe the aggregated optical behavior of a bunch of fur fibers, including the multiple scattering of light among them. Then, to acquire the parameters of our aggregated model, we use a lightweight neural network to map individual fur fiber's optical properties to those in our aggregated model. Finally, we come up with a practical heuristic that guides the simplification process of fur dynamically at different bounces of the light, leading to a practical level-of-detail rendering scheme. Our method achieves nearly the same results as the ground truth, but performs 3.8×-13.5× faster.
The interaction between light and materials is key to physically-based realistic rendering. However, it is also complex to analyze, especially when the materials contain a large number of details and thus exhibit “glinty” visual effects. Recent methods of producing glinty appearance are expected to be important in next-generation computer graphics. We provide here a comprehensive survey on recent glinty appearance rendering. We start with a definition of glinty appearance based on microfacet theory, and then summarize research works in terms of representation and practical rendering. We have implemented typical methods using our unified platform and compare them in terms of visual effects, rendering speed, and memory consumption. Finally, we briefly discuss limitations and future research directions. We hope our analysis, implementations, and comparisons will provide insight for readers hoping to choose suitable methods for applications, or carry out research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.