During binocular rivalry, perception alternates between dissimilar images presented dichoptically. Although perception during rivalry is believed to originate from competition at a local level, different rivalry zones are not independent: rival targets that are spaced apart but have similar features tend to be dominant at the same time. We investigated grouping of spatially separated rival targets presented to the same or to different eyes and presented in the same or in different hemifields. We found eye-of-origin to be the strongest cue for grouping during binocular rivalry. Grouping was additionally affected by orientation: identical orientations were grouped longer than dissimilar orientations, even when presented to different eyes. Our results suggest that eye-based and orientation-based grouping is independent and additive in nature. Grouping effects were further modulated by the distribution of the targets across the visual field. That is, grouping within the same hemifield can be stronger or weaker than between hemifields, depending on the eye-of-origin of the grouped targets. We also quantified the contribution of the previous cues to grouping of two images during binocular rivalry. These quantifications can be successfully used to predict the dominance durations of different studies. Incorporating the relative contribution of different cues to grouping, and the dependency on hemifield, into future models of binocular rivalry will prove useful in our understanding of the functional and anatomical basis of the phenomenon of binocular rivalry.
It is well established that mammalian visual cortex possesses a large proportion of orientation-selective neurons. Attempts to measure the bandwidth of these mechanisms psychophysically have yielded highly variable results (~6°–180°). Two stimulus factors have been proposed to account for this variability: spatial and temporal frequency; with several studies indicating broader bandwidths at low spatial and high temporal frequencies. We estimated orientation bandwidths using a classic overlay masking paradigm across a range of spatiotemporal frequencies (0.5, 2, and 8 c.p.d.; 1.6 and 12.5 Hz) with target and mask presented either monoptically or dichoptically. A standard three-parameter Gaussian model (amplitude and width, mean fixed at 0°) confirms that bandwidths generally increase at low spatial and high temporal frequencies. When incorporating an additional orientation-untuned (isotropic) amplitude component, however, we find that not only are the amplitudes of isotropic and orientation-tuned components highly dependent upon stimulus spatiotemporal frequency, but orientation bandwidths are highly invariant (~30° half width half amplitude). These results suggest that previously reported spatiotemporally contingent bandwidth effects may have confounded bandwidth with isotropic (so-called cross-orientation) masking. Interestingly, the magnitudes of all monoptically derived parameter estimates were found to transfer dichoptically suggesting a cortical locus for both isotropic and orientation-tuned masking.
During binocular rivalry (BR), conflicting monocular images are alternately suppressed from awareness. During suppression of an image, contrast sensitivity for probes is reduced by approximately 0.3-0.5 log units relative to when the image is in perceptual dominance. Previous studies on rivalry suppression have led to controversies concerning the nature and extent of suppression during BR. We tested for feature-specific suppression using orthogonal rivaling gratings and measuring contrast sensitivity to small grating probes at a range of orientations in a 2AFC orientation discrimination task. Results indicate that suppression is not uniform across orientations: suppression was much greater for orientations close to that of the suppressed grating. The higher suppression was specific to a narrow range around the suppressed rival grating, with a tuning similar to V1 orientation bandwidths. A similar experiment tested for spatial frequency tuning and found that suppression was stronger for frequencies close to that of the suppressed grating. Interestingly, no tuned suppression was observed when a flicker-and-swap paradigm was used, suggesting that tuned suppression occurs only for lower-level, interocular rivalry. Together, the results suggest there are two components to rivalry suppression: a general feature-invariant component and an additional component specifically tuned to the rivaling features.
Binocular rivalry and stimulus rivalry are two forms of perceptual instability that arise when the visual system is confronted with conflicting stimulus information. In the case of binocular rivalry, dissimilar monocular stimuli are presented to the two eyes for an extended period of time, whereas for stimulus rivalry the dissimilar monocular stimuli are exchanged rapidly and repetitively between the eyes during extended viewing. With both forms of rivalry, one experiences extended durations of exclusive perceptual dominance that fluctuate between the two stimuli. Whether these two forms of rivalry arise within different stages of visual processing remains debatable. Using an individual differences approach, we have found that both stimulus rivalry and binocular rivalry exhibit the same-shaped distribution of dominance durations among a sample of thirty observers and, moreover, that dominance durations measured during binocular and stimulus rivalry are significantly correlated among our sample of observers. Furthermore, we find a significant, positive correlation between alternation rate in binocular rivalry and incidence of stimulus rivalry. These results suggest that the two forms of rivalry may be tapping common neural mechanisms, or at least different mechanisms with comparable time constants. It remains to be learned just why the incidence of binocular rivalry and stimulus rivalry varies so greatly among people.
Prolonged viewing of dichoptically presented images with different content results in perceptual alternations known as binocular rivalry. This phenomenon is thought to be the result of competition at a local level, where local rivalry zones interact to give rise to a single, global dominant percept. Certain perceived combinations that result from this local competition are known to last longer than others, which is referred to as grouping during binocular rivalry. In recent years, the phenomenon has been suggested to be the result of competition at both eye- and image-based processing levels, although the exact contribution from each level remains elusive. Here we use a paradigm designed specifically to quantify the contribution of eye- and image-based processing to grouping during rivalry. In this paradigm we used sine-wave gratings as well as upright and inverted faces, with and without binocular disparity-based occlusion. These stimuli and conditions were used because they are known to result in processing at different stages throughout the visual processing hierarchy. Specifically, more complex images were included in order to maximize the potential contribution of image-based grouping. In spite of this, our results show that increasing image complexity did not lead to an increase in the contribution of image-based processing to grouping during rivalry. In fact, the results show that grouping was primarily affected by the eye-of-origin of the image parts, irrespective of stimulus type. We suggest that image content affects grouping during binocular rivalry at low-level processing stages, where it is intertwined with eye-of-origin information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.