Although the international standard CityGML has five levels of detail (LODs), the vast majority of available models are the coarse ones (up to LOD2, ie block-shaped buildings with roofs). LOD3 and LOD4 models, which contain architectural details such as balconies, windows and rooms, nearly exist because, unlike coarser LODs, their construction requires several datasets that must be acquired with different technologies, and often extensive manual work is needed. We investigate in this paper an alternative to obtaining CityGML LOD3 models: the automatic conversion from already existing architectural models (stored in the IFC format). Existing conversion algorithms mostly focus on the semantic mappings and convert all the geometries, which yields CityGML models having poor usability in practice (spatial analysis is for instance not possible). We present a conversion algorithm that accurately applies the correct semantics from IFC models and that constructs valid CityGML LOD3 buildings by performing a series of geometric operations in 3D. We have implemented our algorithm and we demonstrate its effectiveness with several real-world datasets. We also propose specific improvements to both standards to foster their integration in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.