Due to the increasing demand for electricity for the ecotourism areas like Malaysia, alternative energy sources are being required. In this research article, an investigation for the comprehensive off‐grid photovoltaic (PV)–diesel–battery hybrid alternative energy system design with an energy backup of a 5‐kW diesel generator is represented. From the simulation and optimization results, it can be observed that 38 kW hr/day load demand combined with 5‐kW peak load for 37 family units for an ecotourism areas of Malaysia can be fulfilled by establishing the proposed hybrid PV–diesel–battery energy system. It can also be observed from the optimization outcomes that the proposed hybrid renewable energy system (HRES) is the most economically feasible energy system and the levelized cost of energy (COE) is nearing U.S. $0.895/kW hr and net present cost (NPC) is U.S. $158,206, and the COE and NPC have been minimized according to the current market price. After collecting meteorological data, a complete simulation has been conducted with the other parameters to achieve an optimal solution of the PV–diesel–battery hybrid alternative energy system. The decrement of the CO2 emission can be compared to the existing results with the other conventional and HRESs. The simulation results from Hybrid Optimization Model for Electric Renewable software have been validated by using Photovoltaic System Tools (PVSYST) renewable energy platform. The analyzed energy system will be applicable where the meteorological conditions are the same.
Electricity has become a part and parcel of modern life. The world is constantly developing, and the electricity demand is inevitably increasing with it. It is a big challenge for the power generation organizations to cope up with this increasing demand. For a developing country like Bangladesh, this challenge is even bigger. Bangladesh has many remote areas which are deprived of grid connectivity. In this article, system design and performance evaluation are conducted on a solar battery‐based hybrid renewable energy system (HRES) with diesel backup for a school in a remote area located in the northern part of the country, where conventional power grid connectivity is not available. From field survey, a load demand of 10.468 kWh/day for a normal working day and a peak demand of 3.3 kW are considered in this work for the proposed site. For simulation purpose hybrid optimization model for electric renewable, very well‐known software is used. The solar radiation data required for the work are collected from NASA Surface meteorology and Solar Energy database. Analyzing the load requirements and metrological data a solar‐battery diesel generator‐based HRES is proposed for the school. From the analysis and simulation, the Net Present Cost (NPC) for the proposed system is found USD 6191 with a Cost of Energy (COE) of $0.125/kWh. Further, a comparative study is done and the proposed system can reduce the COE and Green House Gas (GHG) emission of about 29.85% and 69% respectively than the conventional power plants. Finally, a techno‐economic analysis is conducted with sensitivity analysis, time series analysis, and multiyear analysis to prove the rigidity of the proposed system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.