Two efficient protocols for the synthesis of tert-butyl (5S,6R,2E, 7E)-5-[(tert-butyldimethylsilyl)oxy]-6-methyl-8-phenyl-2, 7-octadienoate, a major component of the cryptophycins, are reported. The first utilized the Noyori reduction and Frater alkylation of methyl 5-benzyloxy-3-oxopentanoate to set two stereogenic centers, which became the C16 hydroxyl and C1' methyl of the cryptophycins. The second approach started from 3-p-methoxybenzyloxypropanal and a crotyl borane reagent derived from (-)-alpha-pinene to set both stereocenters in a single step and provided the dephenyl analogue, tert-butyl (5S,6R,2E)-5-[(tert-butyldimethylsilyl)oxy]-6-methyl-2, 7-octadienoate, in five steps. This compound was readily converted to the 8-phenyl compound via Heck coupling. The silanyloxy esters were efficiently deprotected and coupled to the C2-C10 amino acid fragment to provide desepoxyarenastatin A and its dephenyl analogue. The terminal olefin of the latter was further elaborated via Heck coupling. Epoxidation provided cryptophycin-24 (arenastatin A).
A library with 63 paclitaxel analogues modified at the C10 position of paclitaxel has been prepared using parallel solution phase synthesis. Most of the C10 analogues were slightly less active than paclitaxel in the tubulin assembly assay and had reduced potency in the B16 melanoma and MCF-7 cell line cytotoxicity assays. These modifications at C10, however, did not lead to the total loss of activity, indicating that the C10 moiety of paclitaxel may not be directly involved in the drug-microtubule interactions, but could influence its binding affinity to P-glycoprotein. Approximately 50% of the analogues demonstrated better activity against the drug resistant cell line MCF7-ADR. However, the increase in activity was 10-fold at most. This result demonstrates that the cytotoxicity against this drug resistant cancer cell line is sensitive to structural changes at the C10 position of paclitaxel. It was also found that the presence of a nitrogen atom in the C10 substituent might play a role in the interaction of analogues with microtubules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.