This paper proposes an improved adaptive approach involving Bacterial Foraging Algorithm (BFA) to optimize both the amplitude and phase of the weights of a linear array of antennas for maximum array factor at any desired direction and nulls in specific directions. The Bacteria Foraging Algorithm is made adaptive using principle of adaptive delta modulation. To show the improvement in making the algorithm adaptive, results for both adaptive and nonadaptive algorithms are given. It is found that Adaptive Bacteria Foraging Algorithm (ABFA) is capable of improving the speed of convergence as well as the precision in the desired result.
Smart antennas are becoming popular in the area of cellular wireless communication for capacity enhancement and reduction of the multipath effect and interference. The demand for smart antennas is widely increasing as 5G cellular communication evolves to support the higher data rate and bandwidth. The basic principle of smart antenna design is adaptive beamforming using the best suited digital signal processing algorithms, such as least mean square (LMS), normalized least mean square (NLMS), sample matrix inversion (SMI), and recursive least square (RLS), each having its pros and cons. Among these, the LMS and NLMS are iterative approaches while SMI is a block adaptive method and RLS is a recursive method. The contribution of this article includes easy implementation of four adaptive beamforming algorithms, namely LMS, NLMS, SMI, and RLS. Furthermore, an exhaustive comparative performance analysis is carried out under five interferers and evaluated in terms of beamwidth, null depth, maximum sidelobe level, rate of convergence, error variation for the number of antenna elements, and spacing. Finally, a contrast table is presented to demonstrate the pros and cons of the listed algorithms. Time and dynamic space complexity are studied for RLS and SMI beamforming algorithms. Performance results from a designed reconfigurable testbed model for weight adaptation and smart beamforming are also presented for analysis and a better understanding of the real implementation of the smart algorithms through testbed design. The simulation and testbed results create the ground work for future exploration in the design of smart antenna beamforming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.