The timely identification and early prevention of crop diseases are essential for improving production. In this paper, deep convolutional-neural-network (CNN) models are implemented to identify and diagnose diseases in plants from their leaves, since CNNs have achieved impressive results in the field of machine vision. Standard CNN models require a large number of parameters and higher computation cost. In this paper, we replaced standard convolution with depth=separable convolution, which reduces the parameter number and computation cost. The implemented models were trained with an open dataset consisting of 14 different plant species, and 38 different categorical disease classes and healthy plant leaves. To evaluate the performance of the models, different parameters such as batch size, dropout, and different numbers of epochs were incorporated. The implemented models achieved a disease-classification accuracy rates of 98.42%, 99.11%, 97.02%, and 99.56% using InceptionV3, InceptionResNetV2, MobileNetV2, and EfficientNetB0, respectively, which were greater than that of traditional handcrafted-feature-based approaches. In comparison with other deep-learning models, the implemented model achieved better performance in terms of accuracy and it required less training time. Moreover, the MobileNetV2 architecture is compatible with mobile devices using the optimized parameter. The accuracy results in the identification of diseases showed that the deep CNN model is promising and can greatly impact the efficient identification of the diseases, and may have potential in the detection of diseases in real-time agricultural systems.
The timely identification of plant diseases prevents the negative impact on crops. Convolutional neural network, particularly deep learning is used widely in machine vision and pattern recognition task. Researchers proposed different deep learning models in the identification of diseases in plants. However, the deep learning models require a large number of parameters, and hence the required training time is more and also difficult to implement on small devices. In this paper, we have proposed a novel deep learning model based on the inception layer and residual connection. Depthwise separable convolution is used to reduce the number of parameters. The proposed model has been trained and tested on three different plant diseases datasets. The performance accuracy obtained on plantvillage dataset is 99.39%, on the rice disease dataset is 99.66%, and on the cassava dataset is 76.59%. With fewer number of parameters, the proposed model achieves higher accuracy in comparison with the state-of-art deep learning models.
Various plant diseases are major threats to agriculture. For timely control of different plant diseases in effective manner, automated identification of diseases are highly beneficial. So far, different techniques have been used to identify the diseases in plants. Deep learning is among the most widely used techniques in recent times due to its impressive results. In this work, we have proposed two methods namely shallow VGG with RF and shallow VGG with Xgboost to identify the diseases. The proposed model is compared with other hand-crafted and deep learning-based approaches. The experiments are carried on three different plants namely corn, potato, and tomato. The considered diseases in corns are Blight, Common rust, and Gray leaf spot, diseases in potatoes are early blight and late blight, and tomato diseases are bacterial spot, early blight, and late blight. The result shows that our implemented shallow VGG with Xgboost model outperforms different deep learning models in terms of accuracy, precision, recall, f1-score, and specificity. Shallow Visual Geometric Group (VGG) with Xgboost gives the highest accuracy rate of 94.47% in corn, 98.74% in potato, and 93.91% in the tomato dataset. The models are also tested with field images of potato, corn, and tomato. Even in field image the average accuracy obtained using shallow VGG with Xgboost are 94.22%, 97.36%, and 93.14%, respectively.
Early detection and identification of plant diseases from leaf images using machine learning is an important and challenging research area in the field of agriculture. There is a need for such kinds of research studies in India because agriculture is one of the main sources of income which contributes seventeen percent of the total gross domestic product (GDP). Effective and improved crop products can increase the farmer’s profit as well as the economy of the country. In this paper, a comprehensive review of the different research works carried out in the field of plant disease detection using both state-of-art, handcrafted-features- and deep-learning-based techniques are presented. We address the challenges faced in the identification of plant diseases using handcrafted-features-based approaches. The application of deep-learning-based approaches overcomes the challenges faced in handcrafted-features-based approaches. This survey provides the research improvement in the identification of plant diseases from handcrafted-features-based to deep-learning-based models. We report that deep-learning-based approaches achieve significant accuracy rates on a particular dataset, but the performance of the model may be decreased significantly when the system is tested on field image condition or on different datasets. Among the deep learning models, deep learning with an inception layer such as GoogleNet and InceptionV3 have better ability to extract the features and produce higher performance results. We also address some of the challenges that are needed to be solved to identify the plant diseases effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.