Highly pathogenic avian influenza (HPAI) has been a public health threat in Bangladesh since the first reported outbreak in poultry in 2007. The country has undertaken numerous efforts to detect, track, and combat avian influenza viruses (AIVs). The predominant genotype of the H5N1 viruses is clade 2.3.2.1a. The persistent changing of clades of the circulating H5N1 strains suggests probable mutations that might have been occurring over time. Surveillance has provided evidence that the virus has persistently prevailed in all sectors and caused discontinuous infections. The presence of AIV in live bird markets has been detected persistently. Weak biosecurity in the poultry sector is linked with resource limitation, low risk perception, and short-term sporadic interventions. Controlling avian influenza necessitates a concerted multi-sector ‘One Health’ approach that includes the government and key stakeholders.
Field trials were conducted on tomato for yield and quality of fruits using different types of organic and inorganic fertilizers at the horticulture farm of Bangladesh Agricultural University (BAU), Mymensingh. Fertilizer treatments were tested on two varieties of tomato ca. Roma VF and BARI 15. The fertilization treatments were T 1 , vermicompost (12 t/ha); T 2 , compost (10 t/ha); T 3 , integrated plant nutrient system (IPNS) or mixed fertilizers (organic 2/3 part and inorganic 1/3 part); T 4 , inorganic fertilizers; and a control (T 5 ). Results showed growth and yield (20.8 t/ha) in tomato were higher in the IPNS treatment. A higher number of fruits per plant (73.7) and plant height (73.5 cm) were obtained from mixed fertilizers (organic 2/3 + inorganic 1/3) or IPNS (integrated plant nutrient system) in Roma VF than other treatments. Fruit yield and diameter were found statistically significant. No significant difference was observed in the quality (total soluble solids) of tomato fruits in both varieties' response to the treatments. The electrical conductivity and pH of the soil were improved by the application of organic manure.
BackgroundA retrospective observational study was conducted to identify fascioliasis hotspots, clusters, potential risk factors and to map fascioliasis risk in domestic ruminants in Bangladesh. Cases of fascioliasis in cattle, buffalo, sheep and goats from all districts in Bangladesh between 2011 and 2013 were identified via secondary surveillance data from the Department of Livestock Services’ Epidemiology Unit. From each case report, date of report, species affected and district data were extracted. The total number of domestic ruminants in each district was used to calculate fascioliasis cases per ten thousand animals at risk per district, and this was used for cluster and hotspot analysis. Clustering was assessed with Moran’s spatial autocorrelation statistic, hotspots with the local indicator of spatial association (LISA) statistic and space-time clusters with the scan statistic (Poisson model). The association between district fascioliasis prevalence and climate (temperature, precipitation), elevation, land cover and water bodies was investigated using a spatial regression model.ResultsA total of 1,723,971 cases of fascioliasis were reported in the three-year study period in cattle (1,164,560), goats (424,314), buffalo (88,924) and sheep (46,173). A total of nine hotspots were identified; one of these persisted in each of the three years. Only two local clusters were found. Five space-time clusters located within 22 districts were also identified. Annual risk maps of fascioliasis cases correlated with the hotspots and clusters detected. Cultivated and managed (P < 0.001) and artificial surface (P = 0.04) land cover areas, and elevation (P = 0.003) were positively and negatively associated with fascioliasis in Bangladesh, respectively.ConclusionsResults indicate that due to land use characteristics some areas of Bangladesh are at greater risk of fascioliasis. The potential risk factors, hot spots and clusters identified in this study can be used to guide science-based treatment and control decisions for fascioliasis in Bangladesh and in other similar geo-climatic zones throughout the world.
Background: Understanding potential risks of multi-drug resistant (MDR) pathogens from the booming poultry sector is a crucial public health concern. Campylobacter spp. are among the most important zoonotic pathogens associated with MDR infections in poultry and human. This study systematically examined potential risks and associated socio-environmental factors of MDR Campylobacter spp. in poultry farms and live bird markets (LBMs) of Bangladesh. Methods: Microbial culture and PCR-based methods were applied to examine the occurrence and MDR patterns of Campylobacter spp. in potential sources (n = 224) at 7 hatcheries, 9 broiler farms and 4 LBMs in three sub-districts. Antimicrobial residues in broiler meat and liver samples (n = 50) were detected by advanced chromatographic techniques. A questionnaire based cross-sectional survey was conducted on socio-environmental factors. Results: Overall, 32% (71/ 224) samples were found contaminated with Campylobacter spp. In poultry farms, Campylobacter spp. was primarily found in cloacal swab (21/49, 43%), followed by drinking water (8/24, 33%), and meat (8/28, 29%) samples of broilers. Remarkably, at LBMs, Campylobacter spp. was detected in higher prevalence (p <0.05) in broiler meat (14/26, 54%), which could be related (p <0.01) to bacterial contamination of drinking water (11/21, 52%) and floor (9/21, 43%). Campylobacter isolates, one from each of 71 positive samples, were differentiated into Campylobacter jejuni (66%) and Campylobacter coli (34%). Alarmingly, 49% and 42% strains of C. jejuni and C. coli, respectively, were observed as MDR, i.e., resistant to three or more antimicrobials, including, tetracycline, amoxicillin, streptomycin, fluoroquinolones, and macrolides. Residual antimicrobials (oxytetracycline, ciprofloxacin and enrofloxacin) were detected in majority of broiler liver (79%) and meat (62%) samples, among which 33% and 19%, respectively, had concentration above acceptable limit. Inadequate personal and environmental hygiene, unscrupulously use of antimicrobials, improper waste disposal, and lack of health surveillance were distinguishable risk factors, with local diversity and compound influences on MDR pathogens. Conclusion: Potential contamination sources and anthropogenic factors associated with the alarming occurrence of MDR Campylobacter, noted in this study, would aid in developing interventions to minimize the increasing risks of poultry-associated MDR pathogens under ‘One Health’ banner that includes poultry, human and environment perspectives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.