Obstructive sleep apnoea syndrome (OSAS) is a common disorder associated with upper airway muscle dysfunction. Agents that improve respiratory muscle performance may have considerable therapeutic value. We examined the effects of acute exposure to sustained and intermittent hypoxia on rat pharyngeal dilator muscle function. Additionally, we sought to test the efficacy of antioxidant treatment in ameliorating or preventing hypoxia-related muscle dysfunction. Isometric contractile and endurance properties of isolated rat sternohyoid muscle bundles were examined at 35 °C in vitro. Muscle bundles were exposed to one of four gas treatments: hyperoxia (control), sustained hypoxia (SH), intermittent hypoxia (IH) or hypoxia/re-oxygenation (HR), in the absence or presence of the superoxide scavenger – Tempol (10 mM). Stress-frequency relationship was determined in response to electrical stimulation (10-100 Hz in increments of 10-20 Hz, train duration: 300 ms). Muscle performance was also assessed during repetitive muscle stimulation (40 Hz, 300 ms every 2 s for 2.5 min). Compared to control, IH and HR treatments significantly decreased sternohyoid muscle force. The negative inotropic effect of the two gas protocols was similar, but both were of lesser magnitude than the effects of SH. SH, but not IH and HR, increased muscle fatigue. Tempol significantly increased sensitivity to stimulation in all muscle preparations and caused a leftward shift in the stress-frequency relationship of IH and SH treated muscles. Tempol did not ameliorate sternohyoid muscle fatigue during SH. We conclude that Tempol increases upper airway muscle sensitivity to stimulation but only modestly ameliorates respiratory muscle weakness during intermittent and sustained hypoxic conditions in vitro. Respiratory muscle fatigue during sustained hypoxia appears unrelated to oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.