The design and development of a compact square-wave pulse generator for the electroporation of biological cells is presented. This electroporator can generate square-wave pulses with durations from 3 μs up to 10 ms, voltage amplitudes up to 3500 V, and currents up to 250 A. The quantity of the accumulated energy is optimized by means of a variable capacitor bank. The pulse forming unit design uses a crowbar circuit, which gives better control of the pulse form and its duration, independent of the load impedance. In such cases, the square-wave pulse form ensures better control of electroporation efficiency by choosing parameters determined in advance. The device has an integrated graphic LCD screen and measurement modules for the visualization of the current pulse, allowing for express control of the electroporation quality and does not require an external oscilloscope for current pulse recording. This electroporator was tested on suspensions of Saccharomyces cerevisiae yeast cells, during which, it was demonstrated that the application of such square-wave pulses ensured better control of the electroporation efficiency and cell viability after treatment using the pulsed electric field (PEF).
The results of colossal magnetoresistance (CMR) properties of La0.83Sr0.17Mn1.21O3 (LSMO) films grown by pulsed injection MOCVD technique onto various substrates are presented. The films with thicknesses of 360 nm and 60 nm grown on AT-cut single crystal quartz, polycrystalline Al2O3, and amorphous Si/SiO2 substrates were nanostructured with column-shaped crystallites spread perpendicular to the film plane. It was found that morphology, microstructure, and magnetoresistive properties of the films strongly depend on the substrate used. The low-field MR at low temperatures (25 K) showed twice higher values (−31% at 0.7 T) for LSMO/quartz in comparison to films grown on the other substrates (−15%). This value is high in comparison to results published in literature for manganite films prepared without additional insulating oxides. The high-field MR measured up to 20 T at 80 K was also the highest for LSMO/quartz films (−56%) and demonstrated the highest sensitivity S = 0.28 V/T at B = 0.25 T (voltage supply 2.5 V), which is promising for magnetic sensor applications. It was demonstrated that Mn excess Mn/(La + Sr) = 1.21 increases the metal-insulator transition temperature of the films up to 285 K, allowing the increase in the operation temperature of magnetic sensors up to 363 K. These results allow us to fabricate CMR sensors with predetermined parameters in a wide range of magnetic fields and temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.