BackgroundQ fever is a common cause of febrile illness and community-acquired pneumonia in resource-limited settings. Coxiella burnetii, the causative pathogen, is transmitted among varied host species, but the epidemiology of the organism in Africa is poorly understood. We conducted a systematic review of C. burnetii epidemiology in Africa from a “One Health” perspective to synthesize the published data and identify knowledge gaps.Methods/Principal FindingsWe searched nine databases to identify articles relevant to four key aspects of C. burnetii epidemiology in human and animal populations in Africa: infection prevalence; disease incidence; transmission risk factors; and infection control efforts. We identified 929 unique articles, 100 of which remained after full-text review. Of these, 41 articles describing 51 studies qualified for data extraction. Animal seroprevalence studies revealed infection by C. burnetii (≤13%) among cattle except for studies in Western and Middle Africa (18–55%). Small ruminant seroprevalence ranged from 11–33%. Human seroprevalence was <8% with the exception of studies among children and in Egypt (10–32%). Close contact with camels and rural residence were associated with increased seropositivity among humans. C. burnetii infection has been associated with livestock abortion. In human cohort studies, Q fever accounted for 2–9% of febrile illness hospitalizations and 1–3% of infective endocarditis cases. We found no studies of disease incidence estimates or disease control efforts.Conclusions/Significance C. burnetii infection is detected in humans and in a wide range of animal species across Africa, but seroprevalence varies widely by species and location. Risk factors underlying this variability are poorly understood as is the role of C. burnetii in livestock abortion. Q fever consistently accounts for a notable proportion of undifferentiated human febrile illness and infective endocarditis in cohort studies, but incidence estimates are lacking. C. burnetii presents a real yet underappreciated threat to human and animal health throughout Africa.
Background: Following early implementation of public health measures, San Francisco has experienced a slow rise and a low peak level of coronavirus disease 2019 (COVID-19) cases and deaths. Methods and Findings: We included all patients with COVID-19 pneumonia admitted to the intensive care unit (ICU) at the safety net hospital for San Francisco through April 8, 2020. Each patient had ≥15 days of follow-up. Among 26 patients, the median age was 54 years (interquartile range, 43 to 62), 65% were men, and 77% were Latinx. Mechanical ventilation was initiated for 11 (42%) patients within 24 hours of ICU admission and 20 patients (77%) overall. The median duration of mechanical ventilation was 13.5 days (interquartile range, 5 to 20). Patients were managed with lung protective ventilation (tidal volume <8 ml/kg of ideal body weight and plateau pressure ≤30 cmH2O on 98% and 78% of ventilator days, respectively). Prone positioning was used for 13 of 20 (65%) ventilated patients for a median of 5 days (interquartile range, 2 to 10). Seventeen (65%) patients were discharged home, 1 (4%) was discharged to nursing home, 3 (12%) were discharged from the ICU, and 2 (8%) remain intubated in the ICU at the time of this report. Three (12%) patients have died. Conclusions: Good outcomes were achieved in critically ill patients with COVID-19 by using standard therapies for acute respiratory distress syndrome (ARDS) such as lung protective ventilation and prone positioning. Ensuring hospitals can deliver sustained high-quality and evidence-based critical care to patients with ARDS should remain a priority.
The contribution of respiratory viruses to acute febrile illness (AFI) burden is poorly characterized. We describe the prevalence, seasonality, and clinical features of respiratory viral infection among AFI admissions in Sri Lanka. We enrolled AFI patients ³ 1 year of age admitted to a tertiary care hospital in southern Sri Lanka, June 2012-October 2014. We collected epidemiologic/clinical data and a nasal or nasopharyngeal sample that was tested using polymerase chain reaction (Luminex NxTAG, Austin, TX). We determined associations between weather data and respiratory viral activity using the Spearman correlation and assessed respiratory virus seasonality using a Program for Appropriate Technology definition. Bivariable and multivariable regression analyses were conducted to identify features associated with respiratory virus detection. Among 964 patients, median age was 26.2 years (interquartile range 14.6-39.9) and 646 (67.0%) were male. One-fifth (203, 21.1%) had respiratory virus detected: 13.9% influenza, 1.4% human enterovirus/ rhinovirus, 1.4% parainfluenza virus, 1.1% respiratory syncytial virus, and 1.1% human metapneumovirus. Patients with respiratory virus identified were younger (median 9.8 versus 27.7 years, P < 0.001) and more likely to have respiratory signs and symptoms. Influenza A and respiratory viral activity peaked in February-June each year. Maximum daily temperature was associated with influenza and respiratory viral activity (P = 0.03 each). Patients with respiratory virus were as likely as others to be prescribed antibiotics (55.2% versus 52.6%, P = 0.51), and none reported prior influenza vaccination. Respiratory viral infection was a common cause of AFI. Improved access to vaccines and respiratory diagnostics may help reduce disease burden and inappropriate antibiotic use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.