T unnamed, and very few species have well-documented distributions or population sizes. These data gaps can be resolved by targeting parasites in biodiversity monitoring and sampling programs; protecting, modernizing, and using biological collections as a resource for studying longterm change; and harnessing modern revolutions in bioinformatics and genomics to track shifting host-parasite interactions and catalog new species.…parasite conservation is ready to make the jump from premise to practice. Case studies of successful parasite conservation exist, especially where parasites were conserved along with their hosts during host translocation and ex situ host conservation efforts. Following these examples, standard conservation protocols can minimize (real or perceived) tradeoffs between parasite and host vulnerability, and make protecting parasites alongside their hosts the default option. More broadly, frameworks are in place to start protecting parasites in their own right, including vulnerability assessment, classification on Red Lists, and protection through endangered species legislation.…growing interest in parasite conservation is an asset worth fostering. As academics, conservation practitioners, and stakeholders increasingly work towards advancing parasite conservation, their efforts can be supported through resources and training. At the same time, sharing the benefits and beauty of parasites with the general public through education, outreach, and citizen science could build stronger local and global communities that support parasite conservation efforts.
Recently, the World Health Organization recognized that efforts to interrupt schistosomiasis transmission through mass drug administration have been ineffective in some regions; one of their new recommended strategies for global schistosomiasis control emphasizes targeting the freshwater snails that transmit schistosome parasites. We sought to identify robust indicators that would enable precision targeting of these snails. At the site of the world’s largest recorded schistosomiasis epidemic—the Lower Senegal River Basin in Senegal—intensive sampling revealed positive relationships between intermediate host snails (abundance, density, and prevalence) and human urogenital schistosomiasis reinfection (prevalence and intensity in schoolchildren after drug administration). However, we also found that snail distributions were so patchy in space and time that obtaining useful data required effort that exceeds what is feasible in standard monitoring and control campaigns. Instead, we identified several environmental proxies that were more effective than snail variables for predicting human infection: the area covered by suitable snail habitat (i.e., floating, nonemergent vegetation), the percent cover by suitable snail habitat, and size of the water contact area. Unlike snail surveys, which require hundreds of person-hours per site to conduct, habitat coverage and site area can be quickly estimated with drone or satellite imagery. This, in turn, makes possible large-scale, high-resolution estimation of human urogenital schistosomiasis risk to support targeting of both mass drug administration and snail control efforts.
Host–parasite dynamics are impacted by the relationship between host density and parasite transmission, and thus, all epidemiological models contain a central transmission–density function. Recent theoretical work demonstrates that this central parasite transmission function might be best represented by a nonlinear continuum from one linear extreme to another: density‐dependent transmission at low host densities to density‐independent transmission at high host densities. But how often are nonlinear transmission functions used, and when are they better at describing transmission in real host–parasite systems? To quantify existing modelling practices, we systematically reviewed seven representative ecology journals, finding 262 studies containing host–parasite models that contained linear and/or nonlinear transmission functions. We also reviewed the literature to find 28 experimental and observational studies that compared multiple transmission functions in real host–parasite systems, and tallied which functions were best supported in those systems. Finally, we created a flexible model simulation tool to explore and quantify the bias in model parameter estimates that is created when using an inaccurate transmission function. We found that most experimental and observational studies reported that nonlinear transmission–density functions outperformed simple linear transmission–density functions, supporting recent theoretical work. In contrast, most studies containing host–parasite models assumed that host density was constant and/or used a single, linear transmission function to explain how transmission rates changed with density. Using the wrong linear function and/or using a linear function when the underlying transmission–density relationship is even slightly nonlinear can substantially bias model parameter estimates, as demonstrated by our simulations over a broad parameter space. Some modelling studies may be using linear functions in host–parasite systems where nonlinear functions are more appropriate. If true, these models would yield substantially biased parameter estimates. To avoid such biases that compromise ecological understanding and prediction, we recommend that future studies compare multiple transmission functions, including nonlinear options, whenever possible.
Habitat alteration can influence suitability, creating ecological traps where habitat preference and fitness are mismatched. Despite their importance, ecological traps are notoriously difficult to identify and their impact on host–pathogen dynamics remains largely unexplored. Here we assess individual bat survival and habitat preferences in the midwestern United States before, during, and after the invasion of the fungal pathogen that causes white-nose syndrome. Despite strong selection pressures, most hosts continued to select habitats where disease severity was highest and survival was lowest, causing continued population declines. However, some individuals used refugia where survival was higher. Over time, a higher proportion of the total population used refugia than before pathogen arrival. Our results demonstrate that host preferences for habitats with high disease-induced mortality can create ecological traps that threaten populations, even in the presence of accessible refugia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.