Control of ionomer thin films on metal surfaces is important for a range of electrodes used in electrochemical applications. Engineered peptides have emerged as powerful tools in electrode assembly because binding sites and peptide structures can be modulated by changing the amino acid sequence. However, no studies have been conducted showing peptides can be engineered to interact with ionomers and metals simultaneously. In this study, we design a single-repeat elastin-like peptide to bind to gold using a cysteine residue, and bind to a perfluorinated sulfonic-acid ionomer called Nafion® using a lysine guest residue. Quartz crystal microbalance with dissipation monitoring and atomic force microscopy are used to show that an elastin-like peptide monolayer attached to gold facilitates the formation of a thin, phase-separated ionomer layer. Dynamic light scattering confirms that the interaction between the peptide with the lysine residue and the ionomer also happens in solution, and circular dichroism shows that the peptides maintain their secondary structures in the presence of ionomer. These results demonstrate that elastin-like peptides are promising tools for ionomer control in electrode engineering.
Bimetallic nanoparticles comprised of iron and nickel were synthesized, characterized, and evaluated to optimize the ideal metal ratio for azo dye removal from water systems. Results show that changing the molar ratio of nickel to iron caused different removal rates, as well as the extent of overall elimination of azo dye from water. Lower molar ratios, from Ni1Fe10 to Ni2.5Fe10, exhibited a higher removal efficiency of 80-99%. Higher concentrations of Ni in the catalyst, from Ni3Fe10 to Ni5Fe10, resulted in 70-90% removal. The lower molar ratios of Ni exhibited a consistent removal rate of 0.11 g/L/min, while the higher molar ratios of Ni displayed varying removal rates of 0.1-0.05 g/L/min. A second order kinetic model was fit to the first twenty minutes of the reaction for all nickel to iron compositions, where there is a decrease in rate constant with an increase in molar ratio. During the last forty minutes of reaction, azo dye removal fit a zero order kinetic model. All as-synthesized nanoparticle samples were found to be structurally disordered based on the lack of distinct peaks in XRD spectra. Post-reaction samples were found to have Fe2O3 and FeOOH cubic peaks.
A qualitative investigation of first-generation (FG) college freshmen’s perceptions of academic preparedness and intended success strategies informs the development of potential avenues by which to support FG freshmen in physiology programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.