Biofilms provide a reservoir of potentially infectious micro-organisms that are resistant to antimicrobial agents, and their importance in the failure of medical devices and chronic inflammatory conditions is increasingly being recognized. Particular research interest exists in the association of biofilms with wound infection and non-healing, i.e. chronic wounds. In this study, fluorescent in situ hybridization (FISH) was used in combination with confocal laser scanning microscopy (CLSM) to detect and characterize the spatial distribution of biofilm-forming bacteria which predominate within human chronic skin wounds (Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus sp. and Micrococcus sp.). In vitro biofilms were prepared using a constant-depth film fermenter and a reconstituted human epidermis model. In vivo biofilms were also studied using biopsy samples from non-infected chronic venous leg ulcers. The specificity of peptide nucleic acid (PNA) probes for the target organisms was confirmed using mixed preparations of planktonic bacteria and multiplex PNA probing. Identification and location of individual bacterial species within multi-species biofilms demonstrated that P. aeruginosa was predominant. CLSM revealed clustering of individual species within mixed-species biofilms. FISH analysis of archive chronic wound biopsy sections showed bacterial presence and allowed bacterial load to be determined. The application of this standardized procedure makes available an assay for identification of single-or multi-species bacterial populations in tissue biopsies. The technique provides a reliable tool to study bacterial biofilm formation and offers an approach to assess targeted biofilm disruption strategies in vivo.
The application of antimicrobials in the management of wounds is a complex procedure requiring appropriate clinical decision making, judgment and a thorough understanding of antimicrobial therapies, together with their potential disadvantages. There is considerable direct and indirect evidence for the presence of bacterial biofilms in the chronic wound bed, and it has been demonstrated that bacteria within these biofilms may exhibit both specific and nonspecific antimicrobial tolerance. The antimicrobial tolerance of biofilms is a major concern in the treatment of both infected and nonhealing chronic wounds and an understanding of the mechanisms involved is of fundamental importance in managing wound infections and developing future wound management strategies. The aim of this review is therefore to provide an overview of our current understanding of the mechanisms by which bacteria in wound biofilms can resist conventional antibiotic and antibacterial therapies which is very important to wound healing.
This wound model emphasizes the potential role of the biofilm phenotype in the observed resistance to antibiotic therapies that may occur in chronic wounds in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.