We investigated characteristics of anomalous spatial gradients in ionospheric delay on GNSS signals in the Asia-Pacific (APAC) low-magnetic latitude region in the context of the ground-based augmentation system (GBAS). The ionospheric studies task force established under the Communications, Navigation, and Surveillance subgroup of International Civil Aviation Organization (ICAO) Asia-Pacific Air Navigation Planning and Implementation Regional Group, analyzed GNSS observation data from the Asia-Pacific region to establish a regionally specified ionospheric threat model for GBAS. The largest ionospheric delay gradient value in the analyzed data was 518 mm/km at the L1 frequency (1.57542 GHz), observed at Ishigaki, Japan in April 2008. The upper bound on the ionospheric delay gradient for a common ionospheric threat model for GBAS in the ICAO APAC region was determined to be 600 mm/km, irrespective of satellite elevation angle.
Ground-Based Augmentation System (GBAS) is a GNSS augmentation system that meets International Civil Aviation Organization (ICAO) requirements to support precision approach and landing. GBAS is based on local differential GNSS technique with reference stations located around an airport to provide necessary integrity and accuracy. The performance of the GBAS system can be affected by gradient in the ionospheric delay between aircraft and reference stations. A nominal ionospheric gradient, which is bounded by a conservative error bound, is represented by a parameter σvig. The parameter σvig is commonly determined using station pair to GNSS Continuous Operating Reference Station (CORS) data. The station-pair method is susceptible to doubling of the estimation error of receiver inter-frequency bias (IFB) and is not suitable with the CORS conditions in Indonesia. We propose a satellite-pair method that is found to be more suitable for the CORS network over Indonesia which is centered in Java and Sumatra islands. An overall value of σvig (5.21 mm/km) was obtained using this method along with preliminary results of a comparison of σvig from Java and Sumatra islands.
Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.