Polyaniline (PANI) and polypyrrole (PPY) undergo carbonisation in an inert/reduction atmosphere and vacuum, yielding different nitrogen-containing carbon materials. This contribution reviews various procedures for the carbonisation of PANI and PPY precursors, and the characteristics of obtained carbonised PANI (C-PANI) and carbonised PPY (C-PPY). Special attention is paid to the role of synthetic procedures in tailoring the formation of C-PANI and C-PPY nanostructures and nanocomposites. The review considers the importance of scanning and transmission electron microscopies, XPS, FTIR, Raman, NMR, and EPR spectroscopies, electrical conductivity and adsorption/desorption measurements, XRD, and elemental analyses in the characterisation of C-PANIs and C-PPYs. The application of C-PANI and C-PPY in various fields of modern technology is also reviewed.
Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 degrees C min(-1) up to a maximum temperature of 800 degrees C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 microm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 microm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm(-1), increased to 0.7 S cm(-1) upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.