Bottom ash (BA) is an industrial solid waste formed by the burning of coal. The environmental problems and storage costs caused by this waste increase with every passing day. In this study, the use of BA as an additive (clay substitute) in fired brick production was investigated. The study consisted of two stages. In the first stage, cylinder blocks were produced from clay used in brick production. The second stage was the examination of the experimental substitution of clay with 10, 20, 30 and 40% BA. Samples were fired at 900, 1000, 1100 and 1150 °C to produce fired brick samples. The unit weight, compressive strength (before and after freeze–thawing) and water absorption were analyzed for the samples. The unit weight values decreased in the samples containing BA. The mechanical properties met the conditions prescribed in the relevant standards; i.e., all of the samples fired at 1100 and 1150 °C had a sufficient compressive strength over 20 MPa. The high potential of fired bricks for the construction industry was proved. BA can be used as a clay substitute, while the developed protocol can be used to effectively produce fired bricks.
This work deals with the effect of heat treatment on a microstructure and mechanical properties of a selected cast steel assigned as a material used for frogs in railway crossovers. Materials used nowadays in the railway industry for frogs e.g. Hadfield cast steel (GX120Mn13) or wrougth pearlitic steel (eg. R260) do not fulfil all exploitation requirements indicated in the UIC (International Union of Railways) Decision No. 1692/96 in terms of train speed that should be reached on railways. One of the possible solution is using a cast steel with bainitic or bainitic-martensitic microstructure that allows to gain high strength properties the ultimate tensile strength (UTS) of 1400 MPa, the tensile yield strength (TYS) of 900 MPa and the hardness of up to 400 BHN. The tested material is considered as an alternative to Hadfield cast steel that is currently used for railway frogs.Results of an experimental analysis of the effect of conducted heat treatment on a microstructure, the volume fraction of retained austenite and mechanical properties of bainitic steel, are shown in this paper. It was found that, the heat treatment leads to a stabilization of retained austenite in grain boundaries area of the primary austenite. Additionally, the heat treatment according to the variant #3 results with an almost 3-times higher impact toughness to that exhibited by material subjected to the other treatments.
Today, numerous design solutions require joining thin-walled sheets or profiles as the traditional methods of welding with a consumable electrode in gas shielding, most often used in production processes, do not work well. The reason for this is that a large amount of heat is supplied to the joint, causing numerous welding deformations, defects, and incompatibilities. Moreover, the visual aspect of the connections made more and more often plays an equally crucial role. Therefore, it is important to look for solutions and compare different joining processes in order to achieve production criteria. The paper compares the properties of a 1.5 mm thick steel sheet joined by the manual and robotic MAG 135 and 138 welding process, manual and robotic laser welding, CMT welding with the use of solid or flux-cored wire, and butt welding. The macro- and microstructure, as well as the microhardness distribution of individual regions of the joints, were analyzed depending on the type of joining technology used. Furthermore, the mechanical properties of individual zones of joints were investigated with the use of a digital image correlation system. On the basis of the obtained test results, it was found that the joints made by the processes of manual laser welding and butt welding were characterized by a very regular weld shape, the smallest joint width, and greater grain refinement compared to other analyzed processes. Moreover, this method was characterized by the narrowest zone of hardness increase, only 3 mm, compared to, e.g., a joint made in the process of robotic welding CMT, for which this zone was more than twice as wide. Furthermore, the heat-affected zone for the joints made in this way, in relation to the welds produced by the MAG 135/138 method, was, respectively, 2 and 2.7 times smaller.
Based on the results achieved in systematic studies of structure formation and the formation of multicomponent phases, a scandium-containing filler metal from system alloy Mg-Zr-Nd for welding of aircraft casting was developed. The influence of scandium in magnesium filler alloy on its mechanical and special properties, such as long-term strength at elevated temperatures, was studied by the authors. It is established that modification of the magnesium alloy with scandium in an amount between 0.05 and 0.07% allows a fine-grained structure to be obtained, which increases its plasticity up to 70% and heat resistance up to 1.8 times due to the formation of complex intermetallic phases and the microalloying of the solid solution. Welding of the aircraft castings made of magnesium alloy with scandium-containing filler material allows obtaining a weld with a dense homogeneous fusion zone and the surrounding area without any defects. The developed filler material for welding surface defects (cracks, chips, etc.) formed during operation on aircraft engine bodies makes it possible to restore cast body parts and reuse them. The proposed filler material composition with an improved set of properties for the welding of body castings from Mg-Zr-Nd system alloy for aircraft engines makes it possible to increase their reliability and durability in general, extend the service life of aircraft engines, and obtain a significant economic effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.