Since the introduction of bolometers more than a century ago, they have been applied in a broad spectrum of contexts ranging from security and the construction industry to particle physics and astronomy. However, emerging technologies and missions call for faster bolometers with lower noise. Here, we demonstrate a nanobolometer that exhibits roughly an order of magnitude lower noise equivalent power, 20 zW/ √ Hz, than previously reported for any bolometer. Importantly, it is more than an order of magnitude faster than other low-noise bolometers, with a time constant of 30 µs at 60 zW/ √ Hz. These results suggest a calorimetric energy resolution of 0.3 zJ = h × 0.4 THz with a time constant of 30 µs. Thus the introduced nanobolometer is a promising candidate for future applications requiring extreme precision and speed such as those in astronomy and terahertz photon counting.
Superconducting microwave circuits show great potential for practical quantum technological applications such as quantum information processing. However, fast and on-demand initialization of the quantum degrees of freedom in these devices remains a challenge. Here, we experimentally implement a tunable heat sink that is potentially suitable for the initialization of superconducting qubits. Our device consists of two coupled resonators. The first resonator has a high quality factor and a fixed frequency whereas the second resonator is designed to have a low quality factor and a tunable resonance frequency. We engineer the low quality factor using an on-chip resistor and the frequency tunability using a superconducting quantum interference device. When the two resonators are in resonance, the photons in the high-quality resonator can be efficiently dissipated. We show that the corresponding loaded quality factor can be tuned from above 105 down to a few thousand at 10 GHz in good quantitative agreement with our theoretical model.
We present a structure and a fabrication method for superconducting tunnel junctions down to the dimensions of 200 nm using i-line UV lithography. The key element is a side-wall-passivating spacer structure (SWAPS) which is shaped for smooth crossline contacting and low parasitic capacitance. The SWAPS structure enables formation of junctions with dimensions at or below the lithography-limited linewidth. An additional benefit is avoiding the excessive use of amorphous dielectric materials which is favorable in sub-Kelvin microwave applications often plagued by nonlinear and lossy dielectrics. We apply the structure to niobium trilayer junctions, and provide characterization results yielding evidence on wafer-scale scalability, and critical current density tuning in the range of 0.1 -3.0 kA/cm 2 . We discuss the applicability of the junction process in the context of different applications, such as, SQUID magnetometers and Josephson parametric amplifiers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.