Magnetization dynamics in W/CoFeB, CoFeB/Pt and W/CoFeB/Pt multilayers was investigated using spin-orbit-torque ferromagnetic resonance (SOT-FMR) technique. An analytical model based on magnetization dynamics due to SOT was used to fit heavy metal (HM) thickness dependence of symmetric and antisymmetric components of the SOT-FMR signal. The analysis resulted in a determination of the properties of HM layers, such as spin Hall angle and spin diffusion length. The spin Hall angle of -0.36 and 0.09 has been found in the W/CoFeB and CoFeB/Pt bilayers, respectively, which add up in the case of W/CoFeB/Pt trilayer. More importantly, we have determined effective interfacial spin-orbit fields at both W/CoFeB and CoFeB/Pt interfaces, which are shown to cancel Oersted field for particular thicknesses of the heavy metal layers, leading to pure spin-current-induced dynamics and indicating the possibility for a more efficient magnetization switching.
Spin-orbit-torque (SOT) induced magnetization switching in Co/Pt/Co trilayer, with two Co layers exhibiting magnetization easy axes orthogonal to each other is investigated. Pt layer is used as a source of spin-polarized current as it is characterized by relatively high spin-orbit coupling. The spin Hall angle of Pt, θ = 0.08 is quantitatively determined using spin-orbit torque ferromagnetic resonance technique. In addition, Pt serves as a spacer between two Co layers and depending on it's thickness, different interlayer exchange coupling (IEC) energy between ferromagnets is induced. Intermediate IEC energies, resulting in a top Co magnetization tilted from the perpendicular direction, allows for SOT-induced field-free switching of the top Co layer. The switching process is discussed in more detail, showing the potential of the system for neuromorphic applications.
We report on long-range spin wave (SW) propagation in nanometer-thick Yttrium Iron Garnet (YIG) film with an ultralow Gilbert damping. The knowledge of a wavenumber value | ⃗ | is essential for designing SW devices. Although determining the wavenumber | ⃗ | in experiments like Brillouin light scattering spectroscopy is straightforward, quantifying the wavenumber in all-electrical experiments has not been widely commented so far.We analyze magnetostatic spin wave (SW) propagation in YIG films in order to determine SW wavenumber | ⃗ | excited by the coplanar waveguide. We show that it is crucial to consider influence of magnetic anisotropy fields present in YIG thin films for precise determination of SW wavenumber. With the proposed methods we find that experimentally derived values of | ⃗ | are in perfect agreement with that obtained from electromagnetic simulation only if anisotropy fields are included.
We report on the temperature and layer thickness variation of spin-orbit torques in perpendicularly magnetized W/CoFeB bilayers. Harmonic Hall voltage measurements reveal dissimilar temperature evolutions of longitudinal and transverse effective magnetic field components. The transverse effective field changes sign at 250 K for a 2 nm thick W buffer layer, indicating a much stronger contribution from interface spin-orbit interactions compared to, for example, Ta. Transmission electron microscopy measurements reveal that considerable interface mixing between W and CoFeB is primarily responsible for this effect.
The spin–orbit torque, a torque induced by a charge current flowing through the heavy-metal-conducting layer with strong spin–orbit interactions, provides an efficient way to control the magnetization direction in heavy-metal/ferromagnet nanostructures, required for applications in the emergent magnetic technologies like random access memories, high-frequency nano-oscillators, or bioinspired neuromorphic computations. We study the interface properties, magnetization dynamics, magnetostatic features, and spin–orbit interactions within the multilayer system Ti(2)/Co(1)/Pt(0–4)/Co(1)/MgO(2)/Ti(2) (thicknesses in nanometers) patterned by optical lithography on micrometer-sized bars. In the investigated devices, Pt is used as a source of the spin current and as a nonmagnetic spacer with variable thickness, which enables the magnitude of the interlayer ferromagnetic exchange coupling to be effectively tuned. We also find the Pt thickness-dependent changes in magnetic anisotropies, magnetoresistances, effective Hall angles, and, eventually, spin–orbit torque fields at interfaces. The experimental findings are supported by the relevant interface structure-related simulations, micromagnetic, macrospin, as well as the spin drift-diffusion models. Finally, the contribution of the spin–orbital Edelstein–Rashba interfacial fields is also briefly discussed in the analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.