The dielectric constant for water is reduced under confinement. Although this phenomenon is well known, the underlying physical mechanism for the reduction is still in debate. In this work, we investigate the effect of the orientation of hydrogen bonds on the dielectric properties of confined water using molecular dynamics simulations. We find a reduced rotational diffusion coefficient for water molecules close to the solid surface. The reduced rotational diffusion arises due to the hindered rotation away from the plane parallel to the channel walls. The suppressed rotation in turn affects the orientational polarization of water, leading to a low value for the dielectric constant at the interface. We attribute the constrained out-of-plane rotation to originate from a higher density of planar hydrogen bonds formed by the interfacial water molecules.
In this work, we propose an improved methodology to compute the intrinsic friction coefficient at the liquid–solid (L–S) interface based on the theoretical model developed by Hansen et al. [Phys. Rev. E 84, 016313 (2011)]. Using equilibrium molecular dynamics, we apply our method to estimate the interfacial friction for a simple Lennard-Jones system of argon confined between graphene sheets and a system of water confined between graphene sheets. Our new method shows smaller statistical errors for the friction coefficient than the previous procedure suggested by Hansen et al. Since we only use the interfacial particles, the interfacial friction calculated using our method is solely due to the wall–fluid interactions and is devoid of bulk fluid contributions. The intrinsic nature of the friction coefficient has been validated by measuring the friction coefficient at different interfaces and channel sizes and against direct non-equilibrium molecular dynamics measurements. Our improved methodology is found to be more reliable than the existing equilibrium and non-equilibrium methods and does not suffer from the well-known convergence and correlation-time ambiguities in the methods formulated along Green–Kubo-like ideas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.